Search results for "0204 chemical engineering"

showing 10 items of 273 documents

CFD modelling of profiled-membrane channels for reverse electrodialysis

2014

Abstract: Reverse electrodialysis (RE) is a promising technology for electric power generation from controlled mixing of two differently concentrated salt solutions, where ion-exchange membranes are adopted for the generation of ionic currents within the system. Channel geometry strongly influences fluid flow and thus crucial phenomena such as pressure drop and concentration polarization. Profiled membranes are an alternative to the more commonly adopted net spacers and offer a number of advantages: avoiding the use of non-conductive and relatively expensive materials, reducing hydraulic losses and increasing the active membrane area. In this work, Computational Fluid Dynamic simulations we…

Settore ING-IND/26 - Teoria Dello Sviluppo Dei Processi ChimiciProfiled MembraneSettore ING-IND/25 - Impianti ChimiciAnalytical chemistryConcentration PolarizationOcean Engineering02 engineering and technologyComputational fluid dynamics7. Clean energyComputational fluid dynamic020401 chemical engineeringReversed electrodialysisMass transferReverse electrodialysiFluid dynamics0204 chemical engineeringSettore ING-IND/19 - Impianti NucleariWater Science and TechnologyConcentration polarizationReverse Electrodialysis; Profiled Membrane; Concentration Polarization; Computational Fluid Dynamics; Salinity GradientPressure dropbusiness.industryChemistrySalinity gradientMechanicsElectrodialysis021001 nanoscience & nanotechnologyPollution6. Clean waterMembraneSettore ING-IND/06 - Fluidodinamica0210 nano-technologybusinessDesalination and Water Treatment
researchProduct

REAPOWER – USE OF DESALINATION BRINE FOR POWER PRODUCTION THROUGH REVERSE ELECTRODIALYSIS

2015

Salinity gradient power (SGP) represents a viable renewable energy source associated with the mixing of two solutions of different salinities. Reverse electrodialysis (SGP-RE or RED) is a promising technology to exploit this energy source and directly generate electricity. However, although the principle of this technology is well known since several years, further R&D efforts are still necessary in order to explore the real potential of the SGP-RE process. With this regard, the aim of the REAPower project ( [GRAPHICS] ) is the development of an innovative system for power production by SGP-RE process, using sea (or brackish) water as a diluted solution and brine as a concentrate. The use o…

Settore ING-IND/26 - Teoria Dello Sviluppo Dei Processi ChimiciSettore ING-IND/25 - Impianti ChimiciOcean Engineering02 engineering and technology7. Clean energyDesalinationSalinity Gradient Power Reverse Electrodialysimodelling020401 chemical engineeringReversed electrodialysision-exchange membraneOsmotic power0204 chemical engineeringWater Science and TechnologyseawaterBrackish waterbusiness.industryChemistryEnvironmental engineeringSalinity Gradient Power Reverse Electrodialysis; RED; ion-exchange membrane; modelling; seawater; brine.021001 nanoscience & nanotechnologyREDPollutionbrine.6. Clean waterRenewable energybrineBrineElectricity0210 nano-technologybusinessEnergy source
researchProduct

Flow and mass transfer in spacer-filled channels for reverse electrodialysis: a CFD parametrical study

2016

Abstract In reverse electrodialysis (RED) concentration polarization phenomena and pressure drop affect strongly the power output obtainable; therefore the channel geometry has a crucial impact on the system optimization. Both overlapped and woven spacers are commonly commercialised and adopted for RED experiments; the latter exhibit some potential advantages, such as better mixing and lower shadow effect, but they have been poorly investigated in the literature so far. In this work, computational fluid dynamics was used to predict fluid flow and mass transfer in spacer-filled channels for RED applications. A parametric analysis for different spacer geometries was carried out: woven (w) and…

Settore ING-IND/26 - Teoria Dello Sviluppo Dei Processi ChimiciSpacer-filled channelSettore ING-IND/25 - Impianti ChimiciMixing (process engineering)Filtration and Separation02 engineering and technologyCFD; Concentration polarization; Mass transfer; Reverse electrodialysis (RED); Spacer-filled channel; Physical and Theoretical Chemistry; Materials Science (all); Biochemistry; Filtration and SeparationBiochemistryProtein filamentsymbols.namesake020401 chemical engineeringReversed electrodialysisMass transferFluid dynamicsGeneral Materials ScienceMass transfer0204 chemical engineeringPhysical and Theoretical ChemistryConcentration polarizationSettore ING-IND/19 - Impianti NucleariConcentration polarizationPressure dropSettore ING-IND/24 - Principi Di Ingegneria ChimicaChromatographyChemistryReverse electrodialysis (RED)Reynolds numberMechanics021001 nanoscience & nanotechnologysymbolsMaterials Science (all)0210 nano-technologyCFD
researchProduct

Diffusion dialysis for the treatment of H2SO4-CuSO4 solutions from electroplating plants: Ions membrane transport characterization and modelling

2021

Diffusion dialysis (DD) is proposed to separate and recover mineral acids and transition metals from electroplating industry process waters promoting a circular approach of resources recovery. In this work, a DD module with two anionic membranes (Fumasep FAD and Neosepta AFN) are used for the separation of H2SO4 from Cu2+ containing solutions. The membrane performances with sole H2SO4 solutions (0.2–2 M) and sole CuSO4 solutions (0.8–1.1 M Cu2+) and with mixtures of H2SO4 (0.6 M) and CuSO4 (0.2–1.1 M Cu2+) as feed are studied. H2SO4 recovery efficiency decreases as the concentration of acid increases. For H2SO4 solutions, the water drag flux from the retentate to the diffusate prevails agai…

Settore ING-IND/26 - Teoria Dello Sviluppo Dei Processi ChimiciWork (thermodynamics)Brine valorizationCircular economyEconomia circularDiffusionAigües residuals -- DepuracióAnalytical chemistryCopper electroplatingSulphuric acid recoveryFiltration and Separation02 engineering and technologyGalvanoplàstiaCopper electroplating Sulphuric acid recovery Brine valorization Circular economy Industrial wastewater treatment Diffusion dialysisAnalytical ChemistryIndustrial wastewater treatment:Enginyeria química [Àrees temàtiques de la UPC]020401 chemical engineering0204 chemical engineeringElectroplatingChemistryIndustrial wastewater treatmentMembrane transport021001 nanoscience & nanotechnologyElectroplatingMembraneSewage -- PurificationDiffusion dialysis0210 nano-technologyDialysis (biochemistry)Flux (metabolism)
researchProduct

Water desalination by capacitive electrodialysis: Experiments and modelling

2020

Abstract Electrodialysis-related technologies keep spreading in multiple fields, among which water desalination still plays a major role. A new technology that has not yet been thoroughly investigated is capacitive electrodialysis (CED), which couples the standard ED with capacitive electrodes. CED has a number of advantages such as removal of toxic products and system simplification. Little mention is made of this technology in the literature and, to the best of our knowledge, no modelling works have ever been presented. In this work, the CED process has been studied through experiments and modelling. A CED model is presented for the first time. With a simple calibration based on macroscop…

Settore ING-IND/26 - Teoria Dello Sviluppo Dei Processi ChimiciWork (thermodynamics)Computer scienceGeneral Chemical EngineeringCapacitive sensing02 engineering and technologyCapacitive electrodes020401 chemical engineeringCalibrationGeneral Materials ScienceElectromembrane proce0204 chemical engineeringProcess engineeringWater desalinationIon exchange membraneWater Science and TechnologyDesalinationbusiness.industryMechanical EngineeringProcess (computing)Experimental dataGeneral ChemistryCarbon electrodeElectrodialysis021001 nanoscience & nanotechnology6. Clean water0210 nano-technologybusinessDynamic simulationDesalination
researchProduct

A Novel Ionic Exchange Membrane Crystallizer to Recover Magnesium Hydroxide from Seawater and Industrial Brines

2020

A novel technology, the ion exchange membrane crystallizer (CrIEM), that combines reactive and membrane crystallization, was investigated in order to recover high purity magnesium hydroxide from multi-component artificial and natural solutions. In particular, in a CrIEM reactor, the presence of an anion exchange membrane (AEM), which separates two-compartment containing a saline solution and an alkaline solution, allows the passage of hydroxyl ions from the alkaline to the saline solution compartment, where crystallization of magnesium hydroxide occurs, yet avoiding a direct mixing between the solutions feeding the reactor. This enables the use of low-cost reactants (e.g., Ca(OH)2) without …

Settore ING-IND/26 - Teoria Dello Sviluppo Dei Processi Chimicibrine valorisationInorganic chemistryIonic bondingchemistry.chemical_elementFiltration and Separation02 engineering and technologylcsh:Chemical technologyArticlelaw.inventionmembrane crystallizer020401 chemical engineeringlawChemical Engineering (miscellaneous)lcsh:TP1-1185critical raw materiallcsh:Chemical engineering0204 chemical engineeringCrystallizationwastewaterIon exchangeChemistryMagnesiumProcess Chemistry and Technologylcsh:TP155-156bitternContamination021001 nanoscience & nanotechnology6. Clean waterMembraneBrineSeawater0210 nano-technologyMembranes
researchProduct

CFD simulations of early- to fully-turbulent conditions in unbaffled and baffled vessels stirred by a Rushton turbine

2021

Abstract Laboratory scale unbaffled tanks provided with a top cover and a baffled tank both stirred by a Rushton turbine were simulated by carrying out RANS simulations. Three different turbulence models were adopted (k- ω SST, k- e and the SSG Reynolds stress model) to predict the flow field and the relevant performance parameters (power and pumping numbers) of the tank operated from early to fully turbulent conditions. CFD results were compared with literature experimental data and DNS simulation results to validate and properly compare the models. In the range of Reynolds numbers investigated, results showed that, for the unbaffled tank, the SSG model based on Reynolds stresses is a bett…

Settore ING-IND/26 - Teoria Dello Sviluppo Dei Processi Chimicibusiness.industryTurbulenceGeneral Chemical EngineeringSettore ING-IND/25 - Impianti ChimiciReynolds number02 engineering and technologyGeneral ChemistryReynolds stressMechanicsComputational fluid dynamicsLaboratory scale021001 nanoscience & nanotechnologyFlow fieldRushton turbinesymbols.namesake020401 chemical engineeringCFD SSG Stirred tank Turbulence model Unbaffled vesselsymbols0204 chemical engineering0210 nano-technologybusinessReynolds-averaged Navier–Stokes equationsSettore ING-IND/19 - Impianti NucleariMathematics
researchProduct

Empirical estimates of the radiative impact of an unusually extreme dust and wildfire episode on the performance of a photovoltaic plant in Western M…

2019

Abstract We have estimated the radiative impact produced by an unusually extreme dust and wildfire episode on the performance of a photovoltaic (PV) plant. The dust and wildfire events were mostly active on 26–28 and 29–30 June 2012, respectively. We took advantage of the consecutiveness of both events to separate and derive empirically the radiative effect of dust and smoke aerosols. With this purpose, we employed measurements of aerosol load, radiation and PV power output from a collocated atmospheric station and PV plant located at Burjassot (Valencia, Spain). The empirical estimates were obtained by direct comparison with a summer background day, happened right before the two consecutiv…

SmokeMediterranean climateEnergy loss020209 energyMechanical EngineeringPhotovoltaic system02 engineering and technologyBuilding and ConstructionForcing (mathematics)Management Monitoring Policy and LawAtmospheric sciencescomplex mixturesAerosolGeneral Energy020401 chemical engineering0202 electrical engineering electronic engineering information engineeringRadiative transferEnvironmental science0204 chemical engineeringPv plantApplied Energy
researchProduct

An experimental study for the characterization of fluid dynamics and heat transport within the spacer-filled channels of membrane distillation modules

2018

Abstract The thermo-fluid dynamic behavior of spacer-filled channels for membrane distillation was investigated experimentally. Several different geometry were investigated thanks to customized reference spacers manufactured using a 3D printer. In particular, two sets of experiments were conducted: in the first set, cylindrical filaments were orthogonally arranged and the flow attack angle was made to vary from 0o to 90o; in the second set, the flow attack angle was kept symmetrical and the filament angle was made to vary from 30° to 150°. Each spacer was tested for Reynolds numbers between 200 and 900 in the hot channel, while maintaining a constant temperature difference of 13 °C between …

Spacer-filled channelMaterials scienceGeneral Chemical EngineeringMembrane distillation02 engineering and technologyHeat transfer coefficientMembrane distillationProtein filamentsymbols.namesake020401 chemical engineeringFluid dynamicsHeat transfer coefficientGeneral Materials Science0204 chemical engineeringComposite materialDarcy friction coefficientExperimental measurementWater Science and TechnologyPressure dropThermochromic Liquid CrystalMechanical EngineeringReynolds numberGeneral Chemistry021001 nanoscience & nanotechnologyVolumetric flow rateHeat transfersymbols0210 nano-technologyDesalination
researchProduct

Integral relations, a simplified method to find interfacial resistivities for heat and mass transfer.

2007

International audience; Integral relations were used to predict interface film transfer coefficients for evaporation and condensation. According to these, all coefficients can be calculated for one-component systems, using the thermal resistivity and the enthalpy profile through the interface. The expressions were verified in earlier work using non-equilibrium molecular dynamics simulations for argon-like particles, which interacted with a short-range Lennard-Jones (LJ) spline potential, which becomes zero at about 1.7 times the LJ-diameter. In this paper we verify the validity of these relations for a long-range LJ spline potential which becomes zero at 2.5 times the diameter. In an earlie…

Statistics and ProbabilityPhysicsPhase transitionWork (thermodynamics)CondensationEnthalpyThermodynamics02 engineering and technologyCondensed Matter Physics01 natural sciences[PHYS.PHYS.PHYS-CHEM-PH] Physics [physics]/Physics [physics]/Chemical Physics [physics.chem-ph][CHIM.THEO]Chemical Sciences/Theoretical and/or physical chemistryMolecular dynamicsSpline (mathematics)[CHIM.THEO] Chemical Sciences/Theoretical and/or physical chemistry[ PHYS.PHYS.PHYS-CHEM-PH ] Physics [physics]/Physics [physics]/Chemical Physics [physics.chem-ph]Thermal conductivity020401 chemical engineeringMass transfer0103 physical sciences[ CHIM.THEO ] Chemical Sciences/Theoretical and/or physical chemistry[PHYS.PHYS.PHYS-CHEM-PH]Physics [physics]/Physics [physics]/Chemical Physics [physics.chem-ph]0204 chemical engineering010306 general physicsComputingMilieux_MISCELLANEOUS
researchProduct