Search results for "10.03"

showing 10 items of 4606 documents

A Search for IceCube Events in the Direction of ANITA Neutrino Candidates

2020

During the first three flights of the Antarctic Impulsive Transient Antenna (ANITA) experiment, the collaboration detected several neutrino candidates. Two of these candidate events were consistent with an ultra-high-energy up-going air shower and compatible with a tau neutrino interpretation. A third neutrino candidate event was detected in a search for Askaryan radiation in the Antarctic ice, although it is also consistent with the background expectation. The inferred emergence angle of the first two events is in tension with IceCube and ANITA limits on isotropic cosmogenic neutrino fluxes. Here, we test the hypothesis that these events are astrophysical in origin, possibly caused by a po…

010504 meteorology & atmospheric sciencesPoint sourceAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstrophysics01 natural sciencesStandard ModelHigh Energy Physics - Phenomenology (hep-ph)Tau neutrino0103 physical sciencesTRACK RECONSTRUCTIONSource spectrum010303 astronomy & astrophysics0105 earth and related environmental sciencesPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)astro-ph.HEIsotropyAstrophysics::Instrumentation and Methods for AstrophysicsAstronomy and Astrophysicshep-phHigh Energy Physics - PhenomenologyAir showerPhysics and Astronomy13. Climate actionSpace and Planetary ScienceNeutrinoAstrophysics - High Energy Astrophysical PhenomenaEvent (particle physics)
researchProduct

Spectropolarimetric evidence for a siphon flow along an emerging magnetic flux tube

2016

©2017 The American Astronomical Society. All rights reserved.We study the dynamics and topology of an emerging magnetic flux concentration using high spatial resolution spectropolarimetric data acquired with the Imaging Magnetograph eXperiment on board the sunrise balloon-borne solar observatory. We obtain the full vector magnetic field and the line of sight (LOS) velocity through inversions of the Fe i line at 525.02 nm with the SPINOR code. The derived vector magnetic field is used to trace magnetic field lines. Two magnetic flux concentrations with different polarities and LOS velocities are found to be connected by a group of arch-shaped magnetic field lines. The positive polarity footp…

010504 meteorology & atmospheric sciencesPolarity (physics)photosphere [Sun]FOS: Physical sciencesAstrophysicspolarimetric [Techniques]01 natural sciencesMethods: observational0103 physical sciencesSunriseAstrophysics::Solar and Stellar Astrophysicsobservational [Methods]010303 astronomy & astrophysicsSun: magnetic fieldsSolar and Stellar Astrophysics (astro-ph.SR)0105 earth and related environmental sciencesLine (formation)PhysicsSolar observatoryPolarity symbolsTechniques: polarimetricSun: photosphereAstronomy and AstrophysicsMagnetic fluxMagnetic fieldAstrophysics - Solar and Stellar AstrophysicsFlow (mathematics)magnetic fields [Sun]Space and Planetary Science
researchProduct

The GAPS Programme with HARPS-N at TNG: . Atmospheric Rossiter-McLaughlin effect and improved parameters of KELT-9b

2019

In the framework of the GAPS project, we observed the planet-hosting star KELT-9 (A-type star, VsinI$\sim$110 km/s) with the HARPS-N spectrograph at the TNG. In this work we analyse the spectra and the extracted radial velocities (RVs), to constrain the physical parameters of the system and to detect the planetary atmosphere of KELT-9b. We extracted from the high-resolution optical spectra the mean stellar line profiles with an analysis based on the Least Square Deconvolution technique. Then, we computed the stellar RVs with a method optimized for fast rotators, by fitting the mean stellar line profile with a purely rotational profile instead of using a Gaussian function. The new spectra an…

010504 meteorology & atmospheric sciencesRossiter–McLaughlin effectFOS: Physical sciencesAstrophysics01 natural sciencesSpectral lineAtmospheretechniques: radial velocities0103 physical sciencesAstrophysics::Solar and Stellar Astrophysicsplanetary systems010303 astronomy & astrophysicsSolar and Stellar Astrophysics (astro-ph.SR)0105 earth and related environmental sciencesEarth and Planetary Astrophysics (astro-ph.EP)planets and satellites: atmospheresPhysicsSettore FIS/05Astronomy and AstrophysicsPlanetary systemstars: individual: KELT-9ExoplanetRadial velocityAmplitudeAstrophysics - Solar and Stellar AstrophysicsSpace and Planetary ScienceAstrophysics::Earth and Planetary AstrophysicsPlanetary masstechniques: spectroscopicAstrophysics - Earth and Planetary Astrophysics
researchProduct

Titan's surface albedo variations over a Titan season from near-infrared CFHT/FTS spectra

2006

International audience; We have observed Titan in a series of campaigns from 1991 to 1996 with the Fourier Transform Spectrometer on the CFH telescope. The data acquired provide a lightcurve from the geometric albedos in the 0.9–View the MathML source spectral region. The 1991–1993 data were previously analyzed in Coustenis et al. [1995. Titan's surface: composition and variability from its near-infrared albedo. Icarus 118, 87–104] with a spherical particle code by McKay et al. [1989. The thermal structure of Titan's atmosphere. Icarus 80, 23–53]. We present here three new datasets from the 1994, 1995 and 1996 observations, with additional information from the 0.94-μm methane window on Tita…

010504 meteorology & atmospheric sciencesSatellitesCFHTAstrophysicsAtmospheric sciences01 natural sciencesMethaneAtmosphereMethane absorption coefficientssymbols.namesakechemistry.chemical_compoundNear-infraredPlanet0103 physical sciencesRadiative transfer010303 astronomy & astrophysicsSpectroscopy0105 earth and related environmental sciencesPhysicsAtmospheric methaneAstronomy and AstrophysicsTholinAlbedochemistry13. Climate actionSpace and Planetary SciencesymbolsTitan (rocket family)Titan
researchProduct

Disambiguating the soils of Mars

2020

Abstract Anticipated human missions to Mars require a methodical understanding of the unconsolidated bulk sediment that mantles its surface, given its role as an accessible resource for water and as a probable substrate for food production. However, classifying martian sediment as soil has been pursued in an ad hoc fashion, despite emerging evidence from in situ missions for current and paleo-pedological processes. Here we find that in situ sediment at Gusev, Meridiani and Gale are consistent with pedogenesis related to comminuted basalts mixing with older phyllosilicates – perhaps of pluvial origin – and sulfates. Furthermore, a notable presence of hydrated amorphous phases indicates signi…

010504 meteorology & atmospheric sciencesSettore GEO/04 - Geografia Fisica E GeomorfologiaEarth scienceWeatheringMartian soilRegolith01 natural sciences0103 physical sciencesWorld Reference Base for Soil ResourcesCryosol010303 astronomy & astrophysics0105 earth and related environmental sciencesUSDA soil taxonomyMartianSoil TaxonomyGelisolAstronomy and AstrophysicsSoil classificationMineral weatheringPedogenesisSettore AGR/14 - PedologiaSpace and Planetary ScienceSoil waterEnvironmental scienceWRBSettore M-GGR/01 - GeografiaPlanetary and Space Science
researchProduct

X-ray flare oscillations track plasma sloshing along star-disk magnetic tubes in Orion star-forming region

2018

Pulsing X-ray emission tracks the plasma echo traveling in an extremely long magnetic tube that flares in an Orion Pre-Main Sequence (PMS) star. On the Sun, flares last from minutes to a few hours and the longest-lasting typically involve arcades of closed magnetic tubes. Long-lasting X-ray flares are observed in PMS stars. Large-amplitude (~20%) long-period (~3 hours) pulsations are detected in the light curve of day-long flares observed by the Advanced CCD Imaging Spectrometer (ACIS) on-board Chandra from PMS stars in the Orion cluster. Detailed hydrodynamic modeling of two flares observed on V772 Ori and OW Ori shows that these pulsations may track the sloshing of plasma along a single l…

010504 meteorology & atmospheric sciencesSlosh dynamicsAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstrophysicsStar (graph theory)01 natural scienceslaw.inventionlaw0103 physical sciencesAstrophysics::Solar and Stellar AstrophysicsX-rays: star010303 astronomy & astrophysicsAstrophysics::Galaxy AstrophysicsSolar and Stellar Astrophysics (astro-ph.SR)0105 earth and related environmental sciencesstars: coronaePhysicsstars: formationTrack (disk drive)X-rayAstronomy and AstrophysicsPlasmaAstronomy and AstrophysicAstrophysics - Solar and Stellar AstrophysicsSpace and Planetary SciencePhysics::Space Physicsstars: flareAstrophysics::Earth and Planetary AstrophysicsFlare
researchProduct

Slow-Mode Magnetoacoustic Waves in Coronal Loops

2021

Rapidly decaying long-period oscillations often occur in hot coronal loops of active regions associated with small (or micro-) flares. This kind of wave activity was first discovered with the SOHO/SUMER spectrometer from Doppler velocity measurements of hot emission lines, thus also often called "SUMER" oscillations. They were mainly interpreted as global (or fundamental mode) standing slow magnetoacoustic waves. In addition, increasing evidence has suggested that the decaying harmonic type of pulsations detected in light curves of solar and stellar flares are likely caused by standing slow-mode waves. The study of slow magnetoacoustic waves in coronal loops has become a topic of particular…

010504 meteorology & atmospheric sciencesSolar activityFOS: Physical sciencesSolar corona01 natural sciencesStanding wave0103 physical sciencesAstrophysics::Solar and Stellar AstrophysicsEmission spectrum010303 astronomy & astrophysicsSolar and Stellar Astrophysics (astro-ph.SR)0105 earth and related environmental sciencesCoronal seismologyPhysicsOscillationOscillations and wavesAstronomy and AstrophysicsCoronal loopLight curveThermal conductionCoronal loopsComputational physicsAstrophysics - Solar and Stellar AstrophysicsSpace and Planetary SciencePhysics::Space PhysicsMagnetohydrodynamics
researchProduct

Understanding the Origins of Problem Geomagnetic Storms Associated with "Stealth" Coronal Mass Ejections.

2021

Geomagnetic storms are an important aspect of space weather and can result in significant impacts on space- and ground-based assets. The majority of strong storms are associated with the passage of interplanetary coronal mass ejections (ICMEs) in the near-Earth environment. In many cases, these ICMEs can be traced back unambiguously to a specific coronal mass ejection (CME) and solar activity on the frontside of the Sun. Hence, predicting the arrival of ICMEs at Earth from routine observations of CMEs and solar activity currently makes a major contribution to the forecasting of geomagnetic storms. However, it is clear that some ICMEs, which may also cause enhanced geomagnetic activity, cann…

010504 meteorology & atmospheric sciencesSpace weather01 natural scienceslaw.inventionDIMMINGSPhysics - Space PhysicslawRECONNECTIONCoronal mass ejectionQB Astronomy010303 astronomy & astrophysicsCoronagraphQCMISSIONQBSTREAMERSUN3rd-DASLow-coronal signaturesMagnetic StormsAstrophysics - Solar and Stellar AstrophysicsMagnetic stormsPhysical SciencesCURRENT SHEETSpace WeatherGeologyCoronal Mass EjectionsSettore FIS/06 - Fisica Per Il Sistema Terra E Il Mezzo CircumterrestreSpace weatherSOLAR-WIND HELIUMMAGNETIC CLOUDSFOS: Physical sciencesSolar cycle 24Astronomy & AstrophysicsArticleCurrent sheet0103 physical sciencesSolar and Stellar Astrophysics (astro-ph.SR)0105 earth and related environmental sciencesGeomagnetic stormScience & TechnologyAstronomyAstronomy and AstrophysicsSpace Physics (physics.space-ph)EVOLUTIONEarth's magnetic fieldQC Physics13. Climate actionSpace and Planetary Science[SDU]Sciences of the Universe [physics]Low-Coronal SignaturesCoronal mass ejectionsMAGNETOHYDRODYNAMIC MODELSInterplanetary spaceflightSpace science reviews
researchProduct

A space weather tool for identifying eruptive active regions

2019

Funding: UK Science and Technology Facilities Council (UK) through the consolidated grant ST/N000609/1 and the European Research Council (ERC) under the European Union Horizon 2020 research and innovation program (grant agreement No. 647214); UK STFC via the Consolidated Grant SMC1/YST025 and SMC1/YST037 (S.L.Y.); UK STFC and the ERC (SynergyGrant: WHOLE SUN, Grant Agreement No. 810218) for financial support (DHM). One of the main goals of solar physics is the timely identification of eruptive active regions. Space missions such as Solar Orbiter or future Space Weather forecasting missions would largely benefit from this achievement.Our aim is to produce a relatively simple technique that c…

010504 meteorology & atmospheric sciencesSpace weatherSolar magnetic fieldsFOS: Physical sciencesSpace weather01 natural sciences3rd-NDASSolar coronal mass ejections0103 physical sciencesRegional sciencemedia_common.cataloged_instanceQB AstronomyEuropean union010303 astronomy & astrophysicsSolar and Stellar Astrophysics (astro-ph.SR)QC0105 earth and related environmental sciencesmedia_commonQBPhysicsHorizon (archaeology)European researchAstronomy and AstrophysicsSolar active region magnetic fieldsSolar active regionsQC PhysicsAstrophysics - Solar and Stellar AstrophysicsSpace and Planetary Science
researchProduct

Star-disk interaction in classical T Tauri stars revealed using wavelet analysis

2016

The extension of the corona of classical T Tauri stars (CTTS) is under discussion. The standard model of magnetic configuration of CTTS predicts that coronal magnetic flux tubes connect the stellar atmosphere to the inner region of the disk. However, differential rotation may disrupt these long loops. The results from Hydrodynamic modeling of X-ray flares observed in CTTS confirming the star-disk connection hypothesis are still controversial. Some authors suggest the presence of the accretion disk prevent the stellar corona to extent beyond the co-rotation radius, while others simply are not confident with the methods used to derive loop lengths. We use independent procedures to determine t…

010504 meteorology & atmospheric sciencesStars: flareAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesX-rays: starsContext (language use)Astrophysics01 natural sciencesSettore FIS/05 - Astronomia E Astrofisica0103 physical sciencesOrion NebulaDifferential rotationAstrophysics::Solar and Stellar Astrophysics010303 astronomy & astrophysicsSolar and Stellar Astrophysics (astro-ph.SR)Astrophysics::Galaxy Astrophysics0105 earth and related environmental sciencesPhysicsCoronal seismologyHigh Energy Astrophysical Phenomena (astro-ph.HE)Stellar atmosphereAstronomy and AstrophysicsCoronaT Tauri starStarsAstrophysics - Solar and Stellar AstrophysicsSpace and Planetary SciencePhysics::Space PhysicsAstrophysics::Earth and Planetary AstrophysicsAstrophysics - High Energy Astrophysical Phenomena
researchProduct