Search results for "104"
showing 10 items of 19508 documents
Calculation of electronic g-tensors using coupled cluster theory.
2009
A scheme for the calculation of the electronic g-tensor at the coupled cluster (CC) level is presented. The reported implementation employs an effective one-electron spin-orbit operator, allows the inclusion of arbitrary excitations in the cluster operator, and offers various options concerning the treatment of orbital relaxation and choice of reference determinants. In addition, the use of gauge-including atomic orbitals (GIAOs) is possible to overcome the gauge origin problem. Benchmark calculations for the NH ((3)Sigma(-)) radical reveal the importance of electron correlation effects for the accurate prediction of the g-shift as well as the slow basis set convergence of such calculations…
Bond Dissociation Energies for Diatomic Molecules Containing 3d Transition Metals: Benchmark Scalar-Relativistic Coupled-Cluster Calculations for 20 …
2017
Benchmark scalar-relativistic coupled-cluster calculations for dissociation energies of the 20 diatomic molecules containing 3d transition metals in the 3dMLBE20 database ( J. Chem. Theory Comput. 2015 , 11 , 2036 ) are reported. Electron correlation and basis set effects are systematically studied. The agreement between theory and experiment is in general satisfactory. For a subset of 16 molecules, the standard deviation between computational and experimental values is 9 kJ/mol with the maximum deviation being 15 kJ/mol. The discrepancies between theory and experiment remain substantial (more than 20 kJ/mol) for VH, CrH, CoH, and FeH. To explore the source of the latter discrepancies, the …
Gas-Phase Synthesis of the Elusive Trisilicontetrahydride Species (Si3H4)
2016
The bimolecular gas-phase reaction of ground-state atomic silicon (Si; 3P) with disilane (Si2H6; 1A1g) was explored under single-collision conditions in a crossed molecular beam machine at a collision energy of 21 kJ mol–1. Combined with electronic structure calculations, the results suggest the formation of Si3H4 isomer(s) along with molecular hydrogen via indirect scattering dynamics through Si3H6 collision complex(es) and intersystem crossing from the triplet to the singlet surface. The nonadiabatic reaction dynamics can synthesize the energetically accessible singlet Si3H4 isomers in overall exoergic reaction(s) (−93 ± 21 kJ mol–1). All reasonable reaction products are either cyclic or …
Steering the excited state dynamics of a photoactive yellow protein chromophore analogue with external electric fields
2014
Abstract The first excited state of the Photoactive Yellow Protein chromophore exhibits a strong charge transfer character and the dipole moments of the excited and ground states differ significantly. Furthermore, the excited state charge distribution changes during the isomerization of this chromophore. These observations suggest that external electric fields can be used to control photo-isomerization, providing a new concept for developing photochromic devices, such as e-paper or optical memory. To test this idea, we performed excited state dynamics simulations and static calculations of a PYP chromophore analogue (pCK − ) in an external electric field. By adjusting direction and strength…
Theoretische Chemie 2004
2005
Durch Kombination von klassischen und quantenmechanischen Theorien lassen sich Quantenphanomene mittlerweile auch in komplexen Systemen wie Flussigkeiten, Nanostrukturen und Biomolekulen beschreiben. Die theoretische Spektroskopie ist das Bindeglied zwischen Molekulphysik und Reaktionsdynamik. Fortschritte in der Methodenentwicklung machen den routinemasigen Einsatz in Analytik und Strukturchemie absehbar. Die Dichtefunktionaltheorie hat sich zu einem wichtigen Bestandteil der chemischen Forschung entwickelt. Die Suche nach Losungen fur fundamentale Probleme bleibt aber schwierig.
Carbonyl compounds of Tc, Re, and Bh: Electronic structure, bonding, and volatility.
2018
Calculations of molecular properties of M(CO)5 and MH(CO)5, where M = Tc, Re, and Bh, and of the products of their decomposition, M(CO)4 and MH(CO)4, were performed using density functional theory and coupled-cluster methods implemented in the relativistic program suits such as ADF, DIRAC, and ReSpect. The calculated first M—CO bond dissociation energies (FBDEs) of Bh(CO)5 and BhH(CO)5 turned out to be significantly weaker than those of the corresponding Re homologs. The reason for that is the relativistic destabilization and expansion of the 6d AOs, responsible for weaker σ-forth and π-back donations in the Bh compounds. The relativistic FBDEs of M(CO)5 have, therefore, a Λ-shape behavior …
Approximate treatment of higher excitations in coupled-cluster theory. II. Extension to general single-determinant reference functions and improved a…
2008
The theory and implementation of approximate coupled-cluster (CC), in particular approximate CC singles, doubles, triples, and quadruples methods, are discussed for general single-determinant reference functions. While the extension of iterative approximate models to the non-Hartree-Fock case is straightforward, the generalization of perturbative approaches is not trivial. In contrast to the corresponding perturbative triples methods, there are additional terms required for non-Hartree-Fock reference functions, and there are several possibilities to derive approximations to these terms. As it turns out impossible to develop an approach that is consistent with the canonical Hartree-Fock-base…
Heterogeneous Interactions between Gas-Phase Pyruvic Acid and Hydroxylated Silica Surfaces: A Combined Experimental and Theoretical Study
2019
The adsorption of gas-phase pyruvic acid (CH3COCOOH) on hydroxylated silica particles has been investigated at 296 K using transmission Fourier transform infrared (FTIR) spectroscopy and theoretical simulations. Under dry conditions (<1% relative humidity, RH), both the trans-cis (Tc) and trans-trans (Tt) pyruvic acid conformers are observed on the surface as well as the (hydrogen bonded) pyruvic acid dimer. The detailed surface interactions were further understood through ab initio molecular dynamics simulations. Under higher relative humidity conditions (above 10% RH), adsorbed water competes for surface adsorption sites. Adsorbed water is also observed to change the relative populations …
Quantum Dynamics of the 17O + 32O2 Collision Process
2016
We report full quantum integral and differential cross sections and rate constants for the 17O + 32O2 reactive process. This constitutes the first quantum scattering study of the 17O16O16O system. We emphasize the comparison with the 18O + 32O2 collision in close connection to the mass-independent fractionation (hereafter referred to as MIF) puzzle for ozone in atmospheric chemistry. We find similar general trends in the cross sections and rate constants for both rare isotopes, but we note some singular behaviors peculiar to the use of 17O isotope, particularly at the lowest collision energies.
Ab initio determination of the ionization potentials of water clusters (H2O)n (n = 2-6).
2012
High-level quantum-chemical ab initio coupled-cluster and multiconfigurational perturbation methods have been used to compute the vertical and adiabatic ionization potentials of several water clusters: dimer, trimer, tetramer, pentamer, hexamer book, hexamer ring, hexamer cage, and hexamer prism. The present results establish reference values at a level not reported before for these systems, calibrating different computational strategies and helping to discard less reliable theoretical and experimental data. The systematic study with the increasing size of the water cluster allows obtaining some clues on the structure and reductive properties of liquid water.