Search results for "14H10"

showing 10 items of 10 documents

Unirationality of Hurwitz spaces of coverings of degree <= 5

2011

Let $Y$ be a smooth, projective curve of genus $g\geq 1$ over the complex numbers. Let $H^0_{d,A}(Y)$ be the Hurwitz space which parametrizes coverings $p:X \to Y$ of degree $d$, simply branched in $n=2e$ points, with monodromy group equal to $S_d$, and $det(p_{*}O_X/O_Y)$ isomorphic to a fixed line bundle $A^{-1}$ of degree $-e$. We prove that, when $d=3, 4$ or $5$ and $n$ is sufficiently large (precise bounds are given), these Hurwitz spaces are unirational. If in addition $(e,2)=1$ (when $d=3$), $(e,6)=1$ (when $d=4$) and $(e,10)=1$ (when $d=5$), then these Hurwitz spaces are rational.

Projective curveHurwitz spaceDegree (graph theory)Group (mathematics)General MathematicsSpace (mathematics)unirationalitycoveringvector bundles.CombinatoricsMathematics - Algebraic GeometryMonodromyLine bundle14H10 (Primary) 14H30 (Secondary)Genus (mathematics)Settore MAT/03 - GeometriaComplex numberMathematics
researchProduct

Isomer effects in fragmentation of Polycyclic Aromatic Hydrocarbons

2015

We have observed significant differences in the fragmentation patterns of isomeric Polycyclic Aromatic Hydrocarbon (PAH) cations following collisions with helium atoms at center-of-mass energies around 100 eV. This is in contrast to the situation at other collision energies or in photo-absorption experiments where isomeric effects are very weak and where the lowest-energy dissociation channels (H- and C2H2-loss) domihate in statistical fragmentation processes. In the 100 eV range, non-statistical fragmentation also competes and is uniquely linked to losses of single carbon atoms (CHx-losses). We find that such CHx-losses are correlated with the ionic ground state energy within a given group…

IONSCollision-induced dissociationIonic bondingPolycyclic aromatic hydrocarbonPhotochemistryANTHRACENE01 natural sciencesDissociation (chemistry)IsomersMOLECULESchemistry.chemical_compoundFragmentation (mass spectrometry)Fragmentation0103 physical sciencesMoleculeCollisionsTANDEM MASS-SPECTROMETRYPolycyclic Aromatic HydrocarbonsPhysical and Theoretical ChemistryCOLLISION-INDUCED DISSOCIATION010303 astronomy & astrophysicsInstrumentationSpectroscopyNon-statistical fragmentationchemistry.chemical_classificationAnthracenePolycyclic Aromatic Hydrocarbons PAHs[PHYS.PHYS.PHYS-ATM-PH]Physics [physics]/Physics [physics]/Atomic and Molecular Clusters [physics.atm-clus]010401 analytical chemistryCondensed Matter Physics0104 chemical sciencesDIFFERENTIATIONchemistryIONIZATIONCATIONSGROWTH[PHYS.PHYS.PHYS-CHEM-PH]Physics [physics]/Physics [physics]/Chemical Physics [physics.chem-ph]Ground stateC14H10International Journal of Mass Spectrometry
researchProduct

Nonisotrivial families over curves with fixed point free automorphisms

2005

We construct for any smooth projective curve of genus $q\ge 2$ with a fixed point free automorphism a nonisotrivial family of curves. Moreover we study the space of modular curves and that of parameters.

Mathematics - Algebraic Geometry14H10lcsh:MathematicsFOS: Mathematics14H37lcsh:QA1-939Algebraic Geometry (math.AG)14H10; 14H37
researchProduct

Blown-up toric surfaces with non-polyhedral effective cone

2020

We construct examples of projective toric surfaces whose blow-up at a general point has a non-polyhedral pseudo-effective cone, both in characteristic $0$ and in every prime characteristic $p$. As a consequence, we prove that the pseudo-effective cone of the Grothendieck-Knudsen moduli space $\overline M_{0,n}$ of stable rational curves is not polyhedral for $n\geq 10$ in characteristic $0$ and in characteristic $p$, for all primes $p$. Many of these toric surfaces are related to a very interesting class of arithmetic threefolds that we call arithmetic elliptic pairs of infinite order. Their analysis in characteristic $p$ relies on tools of arithmetic geometry and Galois representations in …

Mathematics - Algebraic GeometryMathematics::Algebraic GeometryMathematics - Number TheoryEffective cones toric surfaces blow up moduli space.Applied MathematicsGeneral MathematicsFOS: MathematicsSettore MAT/03 - GeometriaNumber Theory (math.NT)Algebraic Geometry (math.AG)14C20 14M25 14E30 14H10 14H52
researchProduct

An Arakelov inequality in characteristic p and upper bound of p-rank zero locus

2008

In this paper we show an Arakelov inequality for semi-stable families of algebraic curves of genus $g\geq 1$ over characteristic $p$ with nontrivial Kodaira-Spencer maps. We apply this inequality to obtain an upper bound of the number of algebraic curves of $p-$rank zero in a semi-stable family over characteristic $p$ with nontrivial Kodaira-Spencer map in terms of the genus of a general closed fiber, the genus of the base curve and the number of singular fibres. An extension of the above results to smooth families of Abelian varieties over $k$ with $W_2$-lifting assumption is also included.

Abelian varietyAlgebra and Number TheoryStable curveCombinatoricsAlgebraic cycleMathematics - Algebraic GeometryMathematics::Algebraic Geometry14D05 (Primary) 14G25 14H10 (Secondary)Algebraic surfaceFOS: MathematicsGenus fieldAlgebraic curveAbelian groupAlgebraic Geometry (math.AG)Singular point of an algebraic varietyMathematicsJournal of Number Theory
researchProduct

On the Rational Cohomology of Moduli Spaces of Curves with Level Structures

2009

We investigate low degree rational cohomology groups of smooth compactifications of moduli spaces of curves with level structures. In particular, we determine $H^k(\sgbar, \Q)$ for $g \ge 2$ and $k \le 3$, where $\sgbar$ denotes the moduli space of spin curves of genus $g$.

Pure mathematics14H10Degree (graph theory)Hyperbolic geometryMathematical analysisAlgebraic geometryModuli spaceCohomologyModuli spaceModuli of algebraic curvesMathematics - Algebraic GeometryMathematics::Algebraic GeometryDifferential geometrySpin curveGenus (mathematics)FOS: MathematicsGeometry and TopologySettore MAT/03 - GeometriaAlgebraic Geometry (math.AG)Teichmuller modular groupMathematics
researchProduct

On the birational geometry of the universal Picard variety

2010

We compute the Kodaira dimension of the universal Picard variety P_{d,g} parameterizing line bundles of degree d on curves of genus g under the assumption that (d-g+1,2g-2)=1. We also give partial results for arbitrary degrees d and we investigate for which degrees the universal Picard varieties are birational.

Pure mathematics14H10Degree (graph theory)General MathematicsBirational geometryMathematics - Algebraic GeometryMathematics::Algebraic GeometryGenus (mathematics)Line (geometry)FOS: MathematicsKodaira dimensionpicard variety birational geometrySettore MAT/03 - GeometriaVariety (universal algebra)Algebraic Geometry (math.AG)Mathematics
researchProduct

The Tautological Ring of Spin Moduli Spaces

2009

We introduce the notion of tautological ring for the moduli space of spin curves. Moreover, we study some relations among tautological classes which are motivated by physics. Finally, we show that the Chow rings of these moduli spaces are tautological in low genus.

Ring (mathematics)14H10Applied MathematicsGeneral MathematicsGeometryModuli spaceModuli spaceModuli of algebraic curvestautological ringTheoretical physicsMathematics::Algebraic GeometrySpin curve14E08Settore MAT/03 - Geometriaspin curvesMathematicsSpin-½
researchProduct

Hurwitz spaces of quadruple coverings of elliptic curves and the moduli space of abelian threefolds A_3(1,1,4)

2005

We prove that the moduli space A_3(1,1,4) of polarized abelian threefolds with polarization of type (1,1,4) is unirational. By a result of Birkenhake and Lange this implies the unirationality of the isomorphic moduli space A_3(1,4,4). The result is based on the study the Hurwitz space H_{4,n}(Y) of quadruple coverings of an elliptic curve Y simply branched in n points. We prove the unirationality of its codimension one subvariety H^{0}_{4,A}(Y) which parametrizes quadruple coverings ��:X --&gt; Y with Tschirnhausen modules isomorphic to A^{-1}, where A\in Pic^{n/2}Y, and for which ��^*:J(Y)--&gt; J(X) is injective. This is an analog of the result of Arbarello and Cornalba that the Hurwitz s…

Pure mathematicsSubvarietyGeneral MathematicsCodimension14K10 (Primary) 14H10 14H30 (Secondary)Injective functionModuli spaceHurwitz spaces Abelian threefolds moduli unirationalityElliptic curveMathematics - Algebraic GeometryFOS: MathematicsAbelian groupAlgebraic Geometry (math.AG)Mathematics
researchProduct

The monodromy groups of Dolgachev's CY moduli spaces are Zariski dense

2014

Let $\mathcal{M}_{n,2n+2}$ be the coarse moduli space of CY manifolds arising from a crepant resolution of double covers of $\mathbb{P}^n$ branched along $2n+2$ hyperplanes in general position. We show that the monodromy group of a good family for $\mathcal{M}_{n,2n+2}$ is Zariski dense in the corresponding symplectic or orthogonal group if $n\geq 3$. In particular, the period map does not give a uniformization of any partial compactification of the coarse moduli space as a Shimura variety whenever $n\geq 3$. This disproves a conjecture of Dolgachev. As a consequence, the fundamental group of the coarse moduli space of $m$ ordered points in $\mathbb{P}^n$ is shown to be large once it is not…

Shimura varietyPure mathematicsFundamental groupGeneral MathematicsMathematical analysis14D07 14H10Moduli spaceModuli of algebraic curvesMathematics - Algebraic GeometryMathematics::Algebraic GeometryMonodromyFOS: MathematicsOrthogonal groupCompactification (mathematics)Algebraic Geometry (math.AG)Mathematics::Symplectic GeometrySymplectic geometryMathematics
researchProduct