Search results for "14H10"
showing 10 items of 10 documents
Unirationality of Hurwitz spaces of coverings of degree <= 5
2011
Let $Y$ be a smooth, projective curve of genus $g\geq 1$ over the complex numbers. Let $H^0_{d,A}(Y)$ be the Hurwitz space which parametrizes coverings $p:X \to Y$ of degree $d$, simply branched in $n=2e$ points, with monodromy group equal to $S_d$, and $det(p_{*}O_X/O_Y)$ isomorphic to a fixed line bundle $A^{-1}$ of degree $-e$. We prove that, when $d=3, 4$ or $5$ and $n$ is sufficiently large (precise bounds are given), these Hurwitz spaces are unirational. If in addition $(e,2)=1$ (when $d=3$), $(e,6)=1$ (when $d=4$) and $(e,10)=1$ (when $d=5$), then these Hurwitz spaces are rational.
Isomer effects in fragmentation of Polycyclic Aromatic Hydrocarbons
2015
We have observed significant differences in the fragmentation patterns of isomeric Polycyclic Aromatic Hydrocarbon (PAH) cations following collisions with helium atoms at center-of-mass energies around 100 eV. This is in contrast to the situation at other collision energies or in photo-absorption experiments where isomeric effects are very weak and where the lowest-energy dissociation channels (H- and C2H2-loss) domihate in statistical fragmentation processes. In the 100 eV range, non-statistical fragmentation also competes and is uniquely linked to losses of single carbon atoms (CHx-losses). We find that such CHx-losses are correlated with the ionic ground state energy within a given group…
Nonisotrivial families over curves with fixed point free automorphisms
2005
We construct for any smooth projective curve of genus $q\ge 2$ with a fixed point free automorphism a nonisotrivial family of curves. Moreover we study the space of modular curves and that of parameters.
Blown-up toric surfaces with non-polyhedral effective cone
2020
We construct examples of projective toric surfaces whose blow-up at a general point has a non-polyhedral pseudo-effective cone, both in characteristic $0$ and in every prime characteristic $p$. As a consequence, we prove that the pseudo-effective cone of the Grothendieck-Knudsen moduli space $\overline M_{0,n}$ of stable rational curves is not polyhedral for $n\geq 10$ in characteristic $0$ and in characteristic $p$, for all primes $p$. Many of these toric surfaces are related to a very interesting class of arithmetic threefolds that we call arithmetic elliptic pairs of infinite order. Their analysis in characteristic $p$ relies on tools of arithmetic geometry and Galois representations in …
An Arakelov inequality in characteristic p and upper bound of p-rank zero locus
2008
In this paper we show an Arakelov inequality for semi-stable families of algebraic curves of genus $g\geq 1$ over characteristic $p$ with nontrivial Kodaira-Spencer maps. We apply this inequality to obtain an upper bound of the number of algebraic curves of $p-$rank zero in a semi-stable family over characteristic $p$ with nontrivial Kodaira-Spencer map in terms of the genus of a general closed fiber, the genus of the base curve and the number of singular fibres. An extension of the above results to smooth families of Abelian varieties over $k$ with $W_2$-lifting assumption is also included.
On the Rational Cohomology of Moduli Spaces of Curves with Level Structures
2009
We investigate low degree rational cohomology groups of smooth compactifications of moduli spaces of curves with level structures. In particular, we determine $H^k(\sgbar, \Q)$ for $g \ge 2$ and $k \le 3$, where $\sgbar$ denotes the moduli space of spin curves of genus $g$.
On the birational geometry of the universal Picard variety
2010
We compute the Kodaira dimension of the universal Picard variety P_{d,g} parameterizing line bundles of degree d on curves of genus g under the assumption that (d-g+1,2g-2)=1. We also give partial results for arbitrary degrees d and we investigate for which degrees the universal Picard varieties are birational.
The Tautological Ring of Spin Moduli Spaces
2009
We introduce the notion of tautological ring for the moduli space of spin curves. Moreover, we study some relations among tautological classes which are motivated by physics. Finally, we show that the Chow rings of these moduli spaces are tautological in low genus.
Hurwitz spaces of quadruple coverings of elliptic curves and the moduli space of abelian threefolds A_3(1,1,4)
2005
We prove that the moduli space A_3(1,1,4) of polarized abelian threefolds with polarization of type (1,1,4) is unirational. By a result of Birkenhake and Lange this implies the unirationality of the isomorphic moduli space A_3(1,4,4). The result is based on the study the Hurwitz space H_{4,n}(Y) of quadruple coverings of an elliptic curve Y simply branched in n points. We prove the unirationality of its codimension one subvariety H^{0}_{4,A}(Y) which parametrizes quadruple coverings ��:X --> Y with Tschirnhausen modules isomorphic to A^{-1}, where A\in Pic^{n/2}Y, and for which ��^*:J(Y)--> J(X) is injective. This is an analog of the result of Arbarello and Cornalba that the Hurwitz s…
The monodromy groups of Dolgachev's CY moduli spaces are Zariski dense
2014
Let $\mathcal{M}_{n,2n+2}$ be the coarse moduli space of CY manifolds arising from a crepant resolution of double covers of $\mathbb{P}^n$ branched along $2n+2$ hyperplanes in general position. We show that the monodromy group of a good family for $\mathcal{M}_{n,2n+2}$ is Zariski dense in the corresponding symplectic or orthogonal group if $n\geq 3$. In particular, the period map does not give a uniformization of any partial compactification of the coarse moduli space as a Shimura variety whenever $n\geq 3$. This disproves a conjecture of Dolgachev. As a consequence, the fundamental group of the coarse moduli space of $m$ ordered points in $\mathbb{P}^n$ is shown to be large once it is not…