Search results for "16W30"
showing 3 items of 3 documents
Quantization of Poisson Lie Groups and Applications
1996
LetG be a connected Poisson-Lie group. We discuss aspects of the question of Drinfel'd:can G be quantized? and give some answers. WhenG is semisimple (a case where the answer isyes), we introduce quantizable Poisson subalgebras ofC ∞(G), related to harmonic analysis onG; they are a generalization of F.R.T. models of quantum groups, and provide new examples of quantized Poisson algebras.
The hidden group structure of quantum groups: strong duality, rigidity and preferred deformations
1994
A notion of well-behaved Hopf algebra is introduced; reflexivity (for strong duality) between Hopf algebras of Drinfeld-type and their duals, algebras of coefficients of compact semi-simple groups, is proved. A hidden classical group structure is clearly indicated for all generic models of quantum groups. Moyal-product-like deformations are naturally found for all FRT-models on coefficients andC∞-functions. Strong rigidity (H bi 2 ={0}) under deformations in the category of bialgebras is proved and consequences are deduced.
Multiple Noncommutative Tori and Hopf Algebras
2001
We derive the Kac-Paljutkin finite-dimensional Hopf algebras as finite fibrations of the quantum double torus and generalize the construction for quantum multiple tori.