Search results for "17B10"

showing 3 items of 3 documents

Indecomposable modules over the Virasoro Lie algebra and a conjecture of V. Kac

1991

We consider a class of indecomposable modules over the Virasoro Lie algebra that we call bounded admissible modules. We get results concerning the center and the dimensions of the weight spaces. We prove that these modules always contain a submodule with one-dimensional weight spaces. From this follows the proof of a conjecture of V. Kac concerning the classification of simple admissible modules.

Discrete mathematicsPure mathematics17B10Statistical and Nonlinear PhysicsUniversal enveloping algebraLie superalgebraAffine Lie algebra17B68Lie conformal algebraGraded Lie algebraAlgebra representationVirasoro algebraMathematics::Representation TheoryIndecomposable moduleMathematical PhysicsMathematicsCommunications in Mathematical Physics
researchProduct

Le cône diamant symplectique

2009

Resume Si n + est le facteur nilpotent d'une algebre semi-simple g , le cone diamant de g est la description combinatoire d'une base d'un n + module indecomposable naturel. Cette notion a ete introduite par N.J. Wildberger pour sl ( 3 ) , le cone diamant de sl ( n ) est decrit dans Arnal (2006) [2] , celui des algebres semi-simples de rang 2 dans Agrebaoui (2008) [1] . Dans cet article, nous generalisons ces constructions au cas des algebres de Lie sp ( 2 n ) . Les tableaux de Young semi-standards symplectiques ont ete definis par C. De Concini (1979) [4] , ils forment une base de l'algebre de forme de sp ( 2 n ) . Nous introduisons ici la notion de tableaux de Young quasi standards symplec…

Mathematics(all)20G05 05A15 17B10tableaux de YoungGeneral Mathematics010102 general mathematicsreprésentations0102 computer and information sciencestableaux de Young.[ MATH.MATH-CO ] Mathematics [math]/Combinatorics [math.CO]01 natural sciencesAMS 2000 class. : 20G05 05A15 17B10Algébre de Lie symplectique010201 computation theory & mathematics[MATH.MATH-CO]Mathematics [math]/Combinatorics [math.CO]Algèbre de Lie symplectiqueMathematics - Combinatorics0101 mathematicsMathematics::Representation TheoryHumanitiesMathematics
researchProduct

Jeu de Taquin and Diamond Cone for so(2n+1, C)

2020

International audience; The diamond cone is a combinatorial description for a basis of a natural indecomposable n-module, where n is the nilpotent factor of a complex semisimple Lie algebra g. After N. J. Wildberger who introduced this notion, this description was achieved for g = sl(n) , the rank 2 semisimple Lie algebras and g = sp (2n).In this work, we generalize these constructions to the Lie algebra g = so(2n + 1). The orthogonal semistandard Young tableaux were defined by M. Kashiwara and T. Nakashima, they index a basis for the shape algebra of so(2n + 1). Defining the notion of orthogonal quasistandard Young tableaux, we prove that these tableaux describe a basis for a quotient of t…

quasistandard Young tableauMathematics::Quantum AlgebraShape algebrajeu de taquinMSC: 20G05 05A15 17B10[MATH] Mathematics [math][MATH]Mathematics [math]Mathematics::Representation Theorysemistandard Young tableau
researchProduct