Search results for "17B56"
showing 5 items of 5 documents
About Leibniz cohomology and deformations of Lie algebras
2011
We compare the second adjoint and trivial Leibniz cohomology spaces of a Lie algebra to the usual ones by a very elementary approach. The comparison gives some conditions, which are easy to verify for a given Lie algebra, for deciding whether it has more Leibniz deformations than just the Lie ones. We also give the complete description of a Leibniz (and Lie) versal deformation of the 4-dimensional diamond Lie algebra, and study the case of its 5-dimensional analogue.
Back to the Amitsur-Levitzki theorem: a super version for the orthosymplectic Lie superalgebra osp(1, 2n)
2003
We prove an Amitsur-Levitzki type theorem for the Lie superalgebras osp(1,2n) inspired by Kostant's cohomological interpretation of the classical theorem. We show that the Lie superalgebras gl(p,q) cannot satisfy an Amitsur-Levitzki type super identity if p, q are non zero and conjecture that neither can any other classical simple Lie superalgebra with the exception of osp(1,2n).
Chevalley cohomology for aerial Kontsevich graphs
2013
Let $T_{\operatorname{poly}}(\mathbb{R}^d)$ denote the space of skew-symmetric polyvector fields on $\mathbb{R}^d$, turned into a graded Lie algebra by means of the Schouten bracket. Our aim is to explore the cohomology of this Lie algebra, with coefficients in the adjoint representation, arising from cochains defined by linear combination of aerial Kontsevich graphs. We prove that this cohomology is localized at the space of graphs without any isolated vertex, any "hand" or any "foot". As an application, we explicitly compute the cohomology of the "ascending graphs" quotient complex.
Hom-Lie quadratic and Pinczon Algebras
2017
ABSTRACTPresenting the structure equation of a hom-Lie algebra 𝔤, as the vanishing of the self commutator of a coderivation of some associative comultiplication, we define up to homotopy hom-Lie algebras, which yields the general hom-Lie algebra cohomology with value in a module. If the hom-Lie algebra is quadratic, using the Pinczon bracket on skew symmetric multilinear forms on 𝔤, we express this theory in the space of forms. If the hom-Lie algebra is symmetric, it is possible to associate to each module a quadratic hom-Lie algebra and describe the cohomology with value in the module.
New applications of graded Lie algebras to Lie algebras, generalized Lie algebras and cohomology
2007
We give new applications of graded Lie algebras to: identities of standard polynomials, deformation theory of quadratic Lie algebras, cyclic cohomology of quadratic Lie algebras, $2k$-Lie algebras, generalized Poisson brackets and so on.