Search results for "17B56"

showing 5 items of 5 documents

About Leibniz cohomology and deformations of Lie algebras

2011

We compare the second adjoint and trivial Leibniz cohomology spaces of a Lie algebra to the usual ones by a very elementary approach. The comparison gives some conditions, which are easy to verify for a given Lie algebra, for deciding whether it has more Leibniz deformations than just the Lie ones. We also give the complete description of a Leibniz (and Lie) versal deformation of the 4-dimensional diamond Lie algebra, and study the case of its 5-dimensional analogue.

Leibniz algebraPure mathematicsAlgebra and Number TheoryMathematics::Rings and AlgebrasInfinitesimal deformationK-Theory and Homology (math.KT)17A32 17B56 14D15CohomologyMathematics::K-Theory and HomologyLie algebraMathematics - Quantum AlgebraMathematics - K-Theory and HomologyFOS: MathematicsQuantum Algebra (math.QA)Mathematics
researchProduct

Back to the Amitsur-Levitzki theorem: a super version for the orthosymplectic Lie superalgebra osp(1, 2n)

2003

We prove an Amitsur-Levitzki type theorem for the Lie superalgebras osp(1,2n) inspired by Kostant's cohomological interpretation of the classical theorem. We show that the Lie superalgebras gl(p,q) cannot satisfy an Amitsur-Levitzki type super identity if p, q are non zero and conjecture that neither can any other classical simple Lie superalgebra with the exception of osp(1,2n).

Lie superalgebraType (model theory)17B2001 natural sciencesInterpretation (model theory)CombinatoricsIdentity (mathematics)Simple (abstract algebra)Mathematics::Quantum Algebra0103 physical sciencesFOS: Mathematics0101 mathematicsRepresentation Theory (math.RT)Classical theoremMathematics::Representation TheoryMathematical PhysicsPhysicsConjecture[MATH.MATH-RT]Mathematics [math]/Representation Theory [math.RT]010308 nuclear & particles physics010102 general mathematicsMathematics::Rings and AlgebrasStatistical and Nonlinear Physics16. Peace & justice17B56[ MATH.MATH-RT ] Mathematics [math]/Representation Theory [math.RT]17B20; 17B56Mathematics - Representation Theory
researchProduct

Chevalley cohomology for aerial Kontsevich graphs

2013

Let $T_{\operatorname{poly}}(\mathbb{R}^d)$ denote the space of skew-symmetric polyvector fields on $\mathbb{R}^d$, turned into a graded Lie algebra by means of the Schouten bracket. Our aim is to explore the cohomology of this Lie algebra, with coefficients in the adjoint representation, arising from cochains defined by linear combination of aerial Kontsevich graphs. We prove that this cohomology is localized at the space of graphs without any isolated vertex, any "hand" or any "foot". As an application, we explicitly compute the cohomology of the "ascending graphs" quotient complex.

Pure mathematicsMathematics (miscellaneous)Mathematics::K-Theory and HomologyMathematics::Quantum Algebra05C90Equivariant cohomology53D50Chevalley cohomologyTopologyKontsevich graphsCohomology17B56Mathematics
researchProduct

Hom-Lie quadratic and Pinczon Algebras

2017

ABSTRACTPresenting the structure equation of a hom-Lie algebra 𝔤, as the vanishing of the self commutator of a coderivation of some associative comultiplication, we define up to homotopy hom-Lie algebras, which yields the general hom-Lie algebra cohomology with value in a module. If the hom-Lie algebra is quadratic, using the Pinczon bracket on skew symmetric multilinear forms on 𝔤, we express this theory in the space of forms. If the hom-Lie algebra is symmetric, it is possible to associate to each module a quadratic hom-Lie algebra and describe the cohomology with value in the module.

[ MATH ] Mathematics [math]Universal enveloping algebra01 natural sciencesCohomologyFiltered algebraQuadratic algebraMathematics::Category Theory0103 physical sciences[MATH]Mathematics [math]0101 mathematicsMSC: 17A45 17B56 17D99 55N20ComputingMilieux_MISCELLANEOUSMathematicsSymmetric algebraAlgebra and Number TheoryQuadratic algebrasMathematics::Rings and Algebras010102 general mathematicsUp to homotopy algebras16. Peace & justiceLie conformal algebraHom-Lie algebrasAlgebraDivision algebraAlgebra representationPhysics::Accelerator PhysicsCellular algebra010307 mathematical physics
researchProduct

New applications of graded Lie algebras to Lie algebras, generalized Lie algebras and cohomology

2007

We give new applications of graded Lie algebras to: identities of standard polynomials, deformation theory of quadratic Lie algebras, cyclic cohomology of quadratic Lie algebras, $2k$-Lie algebras, generalized Poisson brackets and so on.

[MATH.MATH-RT]Mathematics [math]/Representation Theory [math.RT]2k-Lie algebrasstandard polynomial.standard polynomial[ MATH.MATH-RT ] Mathematics [math]/Representation Theory [math.RT]Deformation theoryGerstenhaber-Nijenhuis bracketFOS: Mathematicsgraded Lie algebrasquadratic Lie algebra[MATH.MATH-RT] Mathematics [math]/Representation Theory [math.RT]Representation Theory (math.RT)Gerstenhaber bracketcyclic cohomologysuper Poisson bracketsMathematics - Representation TheorySchouten bracket17B70 17B05 17B20 17B56 17B60 17B65
researchProduct