Search results for "18D05"
showing 7 items of 7 documents
Butterflies in a Semi-Abelian Context
2011
It is known that monoidal functors between internal groupoids in the category Grp of groups constitute the bicategory of fractions of the 2-category Grpd(Grp) of internal groupoids, internal functors and internal natural transformations in Grp, with respect to weak equivalences (that is, internal functors which are internally fully faithful and essentially surjective on objects). Monoidal functors can be equivalently described by a kind of weak morphisms introduced by B. Noohi under the name of butterflies. In order to internalize monoidal functors in a wide context, we introduce the notion of internal butterflies between internal crossed modules in a semi-abelian category C, and we show th…
Double adjunctions and free monads
2011
We characterize double adjunctions in terms of presheaves and universal squares, and then apply these characterizations to free monads and Eilenberg--Moore objects in double categories. We improve upon our earlier result in "Monads in Double Categories", JPAA 215:6, pages 1174-1197, 2011, to conclude: if a double category with cofolding admits the construction of free monads in its horizontal 2-category, then it also admits the construction of free monads as a double category. We also prove that a double category admits Eilenberg--Moore objects if and only if a certain parameterized presheaf is representable. Along the way, we develop parameterized presheaves on double categories and prove …
On operads, bimodules and analytic functors
2017
We develop further the theory of operads and analytic functors. In particular, we introduce a bicategory that has operads as 0-cells, operad bimodules as 1-cells and operad bimodule maps as 2-cells, and prove that this bicategory is cartesian closed. In order to obtain this result, we extend the theory of distributors and the formal theory of monads.
Monads in double categories
2010
We extend the basic concepts of Street's formal theory of monads from the setting of 2-categories to that of double categories. In particular, we introduce the double category Mnd(C) of monads in a double category C and define what it means for a double category to admit the construction of free monads. Our main theorem shows that, under some mild conditions, a double category that is a framed bicategory admits the construction of free monads if its horizontal 2-category does. We apply this result to obtain double adjunctions which extend the adjunction between graphs and categories and the adjunction between polynomial endofunctors and polynomial monads.
Bipullbacks of fractions and the snail lemma
2017
Abstract We establish conditions giving the existence of bipullbacks in bicategories of fractions. We apply our results to construct a π 0 - π 1 exact sequence associated with a fractor between groupoids internal to a pointed exact category.
Polynomial functors and polynomial monads
2009
We study polynomial functors over locally cartesian closed categories. After setting up the basic theory, we show how polynomial functors assemble into a double category, in fact a framed bicategory. We show that the free monad on a polynomial endofunctor is polynomial. The relationship with operads and other related notions is explored.
Split extensions, semidirect product and holomorph of categorical groups
2006
Working in the context of categorical groups, we show that the semidirect product provides a biequivalence between actions and points. From this biequivalence, we deduce a two-dimensional classification of split extensions of categorical groups, as well as the universal property of the holomorph of a categorical group. We also discuss the link between the holomorph and inner autoequivalences.