Search results for "18D50"
showing 4 items of 4 documents
OPERADS AND JET MODULES
2005
Let $A$ be an algebra over an operad in a cocomplete closed symmetric monoidal category. We study the category of $A$-modules. We define certain symmetric product functors of such modules generalising the tensor product of modules over commutative algebras, which we use to define the notion of a jet module. This in turn generalises the notion of a jet module over a module over a classical commutative algebra. We are able to define Atiyah classes (i.e. obstructions to the existence of connections) in this generalised context. We use certain model structures on the category of $A$-modules to study the properties of these Atiyah classes. The purpose of the paper is not to present any really de…
Deformation Quantization: Genesis, Developments and Metamorphoses
2002
We start with a short exposition of developments in physics and mathematics that preceded, formed the basis for, or accompanied, the birth of deformation quantization in the seventies. We indicate how the latter is at least a viable alternative, autonomous and conceptually more satisfactory, to conventional quantum mechanics and mention related questions, including covariance and star representations of Lie groups. We sketch Fedosov's geometric presentation, based on ideas coming from index theorems, which provided a beautiful frame for developing existence and classification of star-products on symplectic manifolds. We present Kontsevich's formality, a major metamorphosis of deformation qu…
Polynomial functors and polynomial monads
2009
We study polynomial functors over locally cartesian closed categories. After setting up the basic theory, we show how polynomial functors assemble into a double category, in fact a framed bicategory. We show that the free monad on a polynomial endofunctor is polynomial. The relationship with operads and other related notions is explored.
On operads, bimodules and analytic functors
2017
We develop further the theory of operads and analytic functors. In particular, we introduce a bicategory that has operads as 0-cells, operad bimodules as 1-cells and operad bimodule maps as 2-cells, and prove that this bicategory is cartesian closed. In order to obtain this result, we extend the theory of distributors and the formal theory of monads.