Search results for "20D15"
showing 5 items of 5 documents
Commuting powers and exterior degree of finite groups
2011
In [P. Niroomand, R. Rezaei, On the exterior degree of finite groups, Comm. Algebra 39 (2011), 335-343] it is introduced a group invariant, related to the number of elements $x$ and $y$ of a finite group $G$, such that $x \wedge y = 1_{G \wedge G}$ in the exterior square $G \wedge G$ of $G$. This number gives restrictions on the Schur multiplier of $G$ and, consequently, large classes of groups can be described. In the present paper we generalize the previous investigations on the topic, focusing on the number of elements of the form $h^m \wedge k$ of $H \wedge K$ such that $h^m \wedge k = 1_{H \wedge K}$, where $m \ge 1$ and $H$ and $K$ are arbitrary subgroups of $G$.
Conjugacy classes, characters and products of elements
2019
Recently, Baumslag and Wiegold proved that a finite group $G$ is nilpotent if and only if $o(xy)=o(x)o(y)$ for every $x,y\in G$ of coprime order. Motivated by this result, we study the groups with the property that $(xy)^G=x^Gy^G$ and those with the property that $\chi(xy)=\chi(x)\chi(y)$ for every complex irreducible character $\chi$ of $G$ and every nontrivial $x, y \in G$ of pairwise coprime order. We also consider several ways of weakening the hypothesis on $x$ and $y$. While the result of Baumslag and Wiegold is completely elementary, some of our arguments here depend on (parts of) the classification of finite simple groups.
The average element order and the number of conjugacy classes of finite groups
2021
Abstract Let o ( G ) be the average order of the elements of G, where G is a finite group. We show that there is no polynomial lower bound for o ( G ) in terms of o ( N ) , where N ⊴ G , even when G is a prime-power order group and N is abelian. This gives a negative answer to a question of A. Jaikin-Zapirain.
On the tensor degree of finite groups
2013
We study the number of elements $x$ and $y$ of a finite group $G$ such that $x \otimes y= 1_{_{G \otimes G}}$ in the nonabelian tensor square $G \otimes G$ of $G$. This number, divided by $|G|^2$, is called the tensor degree of $G$ and has connection with the exterior degree, introduced few years ago in [P. Niroomand and R. Rezaei, On the exterior degree of finite groups, Comm. Algebra 39 (2011), 335--343]. The analysis of upper and lower bounds of the tensor degree allows us to find interesting structural restrictions for the whole group.
Finite 2-groups with odd number of conjugacy classes
2016
In this paper we consider finite 2-groups with odd number of real conjugacy classes. On one hand we show that if $k$ is an odd natural number less than 24, then there are only finitely many finite 2-groups with exactly $k$ real conjugacy classes. On the other hand we construct infinitely many finite 2-groups with exactly 25 real conjugacy classes. Both resuls are proven using pro-$p$ techniques and, in particular, we use the Kneser classification of semi-simple $p$-adic algebraic groups.