6533b7d8fe1ef96bd126a56b

RESEARCH PRODUCT

Conjugacy classes, characters and products of elements

Robert M. GuralnickAlexander Moretó

subject

Finite groupCoprime integersGeneral Mathematics010102 general mathematicsGroup Theory (math.GR)01 natural sciences010101 applied mathematicsCombinatoricsNilpotentCharacter (mathematics)Conjugacy classSolvable groupFOS: MathematicsOrder (group theory)Classification of finite simple groups0101 mathematicsMathematics - Group Theory20C15 20D15 20E45Mathematics

description

Recently, Baumslag and Wiegold proved that a finite group $G$ is nilpotent if and only if $o(xy)=o(x)o(y)$ for every $x,y\in G$ of coprime order. Motivated by this result, we study the groups with the property that $(xy)^G=x^Gy^G$ and those with the property that $\chi(xy)=\chi(x)\chi(y)$ for every complex irreducible character $\chi$ of $G$ and every nontrivial $x, y \in G$ of pairwise coprime order. We also consider several ways of weakening the hypothesis on $x$ and $y$. While the result of Baumslag and Wiegold is completely elementary, some of our arguments here depend on (parts of) the classification of finite simple groups.

https://doi.org/10.1002/mana.201800403