0000000000320976

AUTHOR

Robert M. Guralnick

Conjugacy classes, characters and products of elements

Recently, Baumslag and Wiegold proved that a finite group $G$ is nilpotent if and only if $o(xy)=o(x)o(y)$ for every $x,y\in G$ of coprime order. Motivated by this result, we study the groups with the property that $(xy)^G=x^Gy^G$ and those with the property that $\chi(xy)=\chi(x)\chi(y)$ for every complex irreducible character $\chi$ of $G$ and every nontrivial $x, y \in G$ of pairwise coprime order. We also consider several ways of weakening the hypothesis on $x$ and $y$. While the result of Baumslag and Wiegold is completely elementary, some of our arguments here depend on (parts of) the classification of finite simple groups.

research product

Real class sizes and real character degrees

Perhaps unexpectedly, there is a rich and deep connection between field of values of characters, their degrees and the structure of a finite group. Some of the fundamental results on the degrees of characters of finite groups, as the Ito–Michler and Thompson's theorems, admit a version involving only characters with certain fixed field of values ([DNT, NS, NST2, NT1, NT3]).

research product

Squaring a conjugacy class and cosets of normal subgroups

research product

Real constituents of permutation characters

Abstract We prove a broad generalization of a theorem of W. Burnside about the existence of real characters of finite groups to permutation characters. If G is a finite group, under the necessary hypothesis of O 2 ′ ( G ) = G , we can also give some control on the parity of multiplicities of the constituents of permutation characters (a result that needs the Classification of Finite Simple Groups). Along the way, we give a new characterization of the 2-closed finite groups using odd-order real elements of the group. All this can be seen as a contribution to Brauer's Problem 11 which asks how much information about subgroups of a finite group can be determined by the character table.

research product

Self-normalizing Sylow subgroups

Using the classification of finite simple groups we prove the following statement: Let p > 3 p>3 be a prime, Q Q a group of automorphisms of p p -power order of a finite group G G , and P P a Q Q -invariant Sylow p p -subgroup of G G . If C N G ( P ) / P ( Q ) \mathbf {C}_{\mathbf {N}_G(P)/P}(Q) is trivial, then G G is solvable. An equivalent formulation is that if G G has a self-normalizing Sylow p p -subgroup with p > 3 p >3 a prime, then G G is solvable. We also investigate the possibilities when p = 3 p=3 .

research product

Finite Groups with Odd Sylow Normalizers

We determine the non-abelian composition factors of the finite groups with Sylow normalizers of odd order. As a consequence, among others, we prove the McKay conjecture and the Alperin weight conjecture for these groups.

research product

Groups with exactly one irreducible character of degree divisible byp

Let [math] be a prime. We characterize those finite groups which have precisely one irreducible character of degree divisible by [math] .

research product