0000000000320976

AUTHOR

Robert M. Guralnick

showing 7 related works from this author

Conjugacy classes, characters and products of elements

2019

Recently, Baumslag and Wiegold proved that a finite group $G$ is nilpotent if and only if $o(xy)=o(x)o(y)$ for every $x,y\in G$ of coprime order. Motivated by this result, we study the groups with the property that $(xy)^G=x^Gy^G$ and those with the property that $\chi(xy)=\chi(x)\chi(y)$ for every complex irreducible character $\chi$ of $G$ and every nontrivial $x, y \in G$ of pairwise coprime order. We also consider several ways of weakening the hypothesis on $x$ and $y$. While the result of Baumslag and Wiegold is completely elementary, some of our arguments here depend on (parts of) the classification of finite simple groups.

Finite groupCoprime integersGeneral Mathematics010102 general mathematicsGroup Theory (math.GR)01 natural sciences010101 applied mathematicsCombinatoricsNilpotentCharacter (mathematics)Conjugacy classSolvable groupFOS: MathematicsOrder (group theory)Classification of finite simple groups0101 mathematicsMathematics - Group Theory20C15 20D15 20E45MathematicsMathematische Nachrichten
researchProduct

Real class sizes and real character degrees

2010

Perhaps unexpectedly, there is a rich and deep connection between field of values of characters, their degrees and the structure of a finite group. Some of the fundamental results on the degrees of characters of finite groups, as the Ito–Michler and Thompson's theorems, admit a version involving only characters with certain fixed field of values ([DNT, NS, NST2, NT1, NT3]).

Fixed fieldPure mathematicsFinite groupClass (set theory)Character (mathematics)General MathematicsStructure (category theory)Field (mathematics)AlgorithmMathematicsConnection (mathematics)Mathematical Proceedings of the Cambridge Philosophical Society
researchProduct

Squaring a conjugacy class and cosets of normal subgroups

2015

CombinatoricsNormal subgroupConjugacy classApplied MathematicsGeneral MathematicsCosetTopologyMathematicsProceedings of the American Mathematical Society
researchProduct

Real constituents of permutation characters

2022

Abstract We prove a broad generalization of a theorem of W. Burnside about the existence of real characters of finite groups to permutation characters. If G is a finite group, under the necessary hypothesis of O 2 ′ ( G ) = G , we can also give some control on the parity of multiplicities of the constituents of permutation characters (a result that needs the Classification of Finite Simple Groups). Along the way, we give a new characterization of the 2-closed finite groups using odd-order real elements of the group. All this can be seen as a contribution to Brauer's Problem 11 which asks how much information about subgroups of a finite group can be determined by the character table.

CombinatoricsFinite groupAlgebra and Number TheoryCharacter tableClassification of finite simple groupsParity (mathematics)MathematicsJournal of Algebra
researchProduct

Self-normalizing Sylow subgroups

2003

Using the classification of finite simple groups we prove the following statement: Let p > 3 p>3 be a prime, Q Q a group of automorphisms of p p -power order of a finite group G G , and P P a Q Q -invariant Sylow p p -subgroup of G G . If C N G ( P ) / P ( Q ) \mathbf {C}_{\mathbf {N}_G(P)/P}(Q) is trivial, then G G is solvable. An equivalent formulation is that if G G has a self-normalizing Sylow p p -subgroup with p > 3 p >3 a prime, then G G is solvable. We also investigate the possibilities when p = 3 p=3 .

CombinatoricsNormal p-complementFinite groupLocally finite groupApplied MathematicsGeneral MathematicsSylow theoremsClassification of finite simple groupsAutomorphismMathematics
researchProduct

Finite Groups with Odd Sylow Normalizers

2016

We determine the non-abelian composition factors of the finite groups with Sylow normalizers of odd order. As a consequence, among others, we prove the McKay conjecture and the Alperin weight conjecture for these groups.

Pure mathematicsApplied MathematicsGeneral Mathematics010102 general mathematicsSylow theoremsFoundation (engineering)Group Theory (math.GR)20D06 20D2001 natural sciencesMathematics::Group Theory0103 physical sciencesFOS: Mathematics010307 mathematical physicsRepresentation Theory (math.RT)0101 mathematicsMathematics::Representation TheoryMathematics - Group TheoryMathematics - Representation TheoryMathematics
researchProduct

Groups with exactly one irreducible character of degree divisible byp

2014

Let [math] be a prime. We characterize those finite groups which have precisely one irreducible character of degree divisible by [math] .

AlgebraPure mathematicsAlgebra and Number TheoryCharacter (mathematics)character degreesCharacter tableDegree (graph theory)characters20C15Character groupfinite groupsMathematicsAlgebra & Number Theory
researchProduct