6533b831fe1ef96bd1299148

RESEARCH PRODUCT

Self-normalizing Sylow subgroups

Gabriel NavarroGunter MalleRobert M. Guralnick

subject

CombinatoricsNormal p-complementFinite groupLocally finite groupApplied MathematicsGeneral MathematicsSylow theoremsClassification of finite simple groupsAutomorphismMathematics

description

Using the classification of finite simple groups we prove the following statement: Let p > 3 p>3 be a prime, Q Q a group of automorphisms of p p -power order of a finite group G G , and P P a Q Q -invariant Sylow p p -subgroup of G G . If C N G ( P ) / P ( Q ) \mathbf {C}_{\mathbf {N}_G(P)/P}(Q) is trivial, then G G is solvable. An equivalent formulation is that if G G has a self-normalizing Sylow p p -subgroup with p > 3 p >3 a prime, then G G is solvable. We also investigate the possibilities when p = 3 p=3 .

http://www.scopus.com/inward/record.url?eid=2-s2.0-1642322002&partnerID=MN8TOARS