Search results for "20d20"

showing 3 items of 3 documents

Finite Groups with Odd Sylow Normalizers

2016

We determine the non-abelian composition factors of the finite groups with Sylow normalizers of odd order. As a consequence, among others, we prove the McKay conjecture and the Alperin weight conjecture for these groups.

Pure mathematicsApplied MathematicsGeneral Mathematics010102 general mathematicsSylow theoremsFoundation (engineering)Group Theory (math.GR)20D06 20D2001 natural sciencesMathematics::Group Theory0103 physical sciencesFOS: Mathematics010307 mathematical physicsRepresentation Theory (math.RT)0101 mathematicsMathematics::Representation TheoryMathematics - Group TheoryMathematics - Representation TheoryMathematics
researchProduct

Some local properties defining $\mathcal T_0$-groups and related classes of groups

2016

We call $G$ a $\operatorname{Hall}_{\mathcal X}$-group if there exists a normal nilpotent subgroup $N$ of $G$ for which $G/N'$ is an ${\mathcal X}$-group. We call $G$ a ${\mathcal T}_0$-group provided $G/\Phi(G)$ is a ${\mathcal T}$-group, that is, one in which normality is a transitive relation. We present several new local classes of groups which locally define $\operatorname{Hall}_{\mathcal X}$-groups and ${\mathcal T}_0$-groups where ${\mathcal X}\in\{ {\mathcal T},\mathcal {PT},\mathcal {PST}\}$; the classes $\mathcal {PT}$ and $\mathcal {PST}$ denote, respectively, the classes of groups in which permutability and S-permutability are transitive relations.

Discrete mathematicsTransitive relation$\mathcal{T}$-groupGroup (mathematics)General Mathematics010102 general mathematics$\mathcal{PST}$-group010103 numerical & computational mathematics01 natural sciencesFitting subgroupCombinatoricsSubnormal subgroupNilpotentSubgroupT-group20D1020D350101 mathematicsAlgebra over a fieldfinite solvable groupSubnormal subgroup20D20MathematicsPublicacions Matemàtiques
researchProduct

Algorithms for permutability in finite groups

2013

In this paper we describe some algorithms to identify permutable and Sylow-permutable subgroups of finite groups, Dedekind and Iwasawa finite groups, and finite T-groups (groups in which normality is transitive), PT-groups (groups in which permutability is transitive), and PST-groups (groups in which Sylow permutability is transitive). These algorithms have been implemented in a package for the computer algebra system GAP.

General MathematicsS-permutable subgroupIwasawa groups-permutable subgrouppermutable subgroupiwasawa groupdedekind grouppt-group20-04CombinatoricsMathematics::Group TheoryT-grouppst-groupT-groupQA1-93920d10MathematicsFinite groupDedekind groupMathematics::CombinatoricsalgorithmGroup (mathematics)Sylow theoremsGrups Teoria deDedekind groupAlgorithmt-groupPST-groupIwasawa groupfinite groupPermutable subgroup [Finite group]Classification of finite simple groupsCA-groupPT-groupÀlgebraFinite group: Permutable subgroupMATEMATICA APLICADAAlgorithm20d20MathematicsOpen Mathematics
researchProduct