6533b85efe1ef96bd12c0834

RESEARCH PRODUCT

Algorithms for permutability in finite groups

Enric Cosme LlópezAdolfo Ballester-bolinchesRamon Esteban RomeroRamon Esteban-romero

subject

General MathematicsS-permutable subgroupIwasawa groups-permutable subgrouppermutable subgroupiwasawa groupdedekind grouppt-group20-04CombinatoricsMathematics::Group TheoryT-grouppst-groupT-groupQA1-93920d10MathematicsFinite groupDedekind groupMathematics::CombinatoricsalgorithmGroup (mathematics)Sylow theoremsGrups Teoria deDedekind groupAlgorithmt-groupPST-groupIwasawa groupfinite groupPermutable subgroup [Finite group]Classification of finite simple groupsCA-groupPT-groupÀlgebraFinite group: Permutable subgroupMATEMATICA APLICADAAlgorithm20d20Mathematics

description

In this paper we describe some algorithms to identify permutable and Sylow-permutable subgroups of finite groups, Dedekind and Iwasawa finite groups, and finite T-groups (groups in which normality is transitive), PT-groups (groups in which permutability is transitive), and PST-groups (groups in which Sylow permutability is transitive). These algorithms have been implemented in a package for the computer algebra system GAP.

10.2478/s11533-013-0299-4https://doaj.org/article/4c8b771434e6445a845f388c656b1c1e