A comic page for the first isomorphism theorem
Given a homomorphism between algebras, there exists an isomorphism between the quotient of the domain by its kernel and the subalgebra in the codomain given by its image. This theorem, commonly known as the first isomorphism theorem, is a fundamental algebraic result. Different problems have been identified in its instruction, mainly related to the abstraction inherent to its content and to the lack of conceptual models to improve its understanding. In response to this situation, in this paper, we present an illustration that explores the narrative and graphical resources of comics with the aim of describing the set-theoretic elements that are involved in the proof of this theorem.
Formations of Monoids, Congruences, and Formal Languages
The main goal in this paper is to use a dual equivalence in automata theory started in [25] and developed in [3] to prove a general version of the Eilenberg-type theorem presented in [4]. Our principal results confirm the existence of a bijective correspondence between three concepts; formations of monoids, formations of languages and formations of congruences. The result does not require finiteness on monoids, nor regularity on languages nor finite index conditions on congruences. We relate our work to other results in the field and we include applications to non-r-disjunctive languages, Reiterman s equational description of pseudovarieties and varieties of monoids.
A description based on languages of the final non-deterministic automaton
The study of the behaviour of non-deterministic automata has traditionally focused on the languages which can be associated to the different states. Under this interpretation, the different branches that can be taken at every step are ignored. However, we can also take into account the different decisions which can be made at every state, that is, the branches that can be taken, and these decisions might change the possible future behaviour. In this case, the behaviour of the automata can be described with the help of the concept of bisimilarity. This is the kind of description that is usually obtained when the automata are regarded as labelled transition systems or coalgebras. Contrarily t…
Varieties and Covarieties of Languages (Extended Abstract)
AbstractBecause of the isomorphism (X×A)→X≅X→(A→X), the transition structure of a deterministic automaton with state set X and with inputs from an alphabet A can be viewed both as an algebra and as a coalgebra. This algebra-coalgebra duality goes back to Arbib and Manes, who formulated it as a duality between reachability and observability, and is ultimately based on Kalmanʼs duality in systems theory between controllability and observability. Recently, it was used to give a new proof of Brzozowskiʼs minimization algorithm for deterministic automata. Here we will use the algebra-coalgebra duality of automata as a common perspective for the study of both varieties and covarieties, which are …
Group Extensions and Graphs
A classical result of Gaschütz affirms that given a finite A-generated group G and a prime p, there exists a group G# and an epimorphism phi: G# ---> G whose kernel is an elementary abelian p-group which is universal among all groups satisfying this property. This Gaschütz universal extension has also been described in the mathematical literature with the help of the Cayley graph. We give an elementary and self-contained proof of the fact that this description corresponds to the Gaschütz universal extension. Our proof depends on another elementary proof of the Nielsen-Schreier theorem, which states that a subgroup of a free group is free.
Algorithms for permutability in finite groups
In this paper we describe some algorithms to identify permutable and Sylow-permutable subgroups of finite groups, Dedekind and Iwasawa finite groups, and finite T-groups (groups in which normality is transitive), PT-groups (groups in which permutability is transitive), and PST-groups (groups in which Sylow permutability is transitive). These algorithms have been implemented in a package for the computer algebra system GAP.
Some contributions to the theory of transformation monoids
The aim of this paper is to present some contributions to the theory of finite transformation monoids. The dominating influence that permutation groups have on transformation monoids is used to describe and characterise transitive transformation monoids and primitive transitive transformation monoids. We develop a theory that not only includes the analogs of several important theorems of the classical theory of permutation groups but also contains substantial information about the algebraic structure of the transformation monoids. Open questions naturally arising from the substantial paper of Steinberg [A theory of transformation monoids: combinatorics and representation theory. Electron. J…