0000000000056678

AUTHOR

Ramon Esteban-romero

showing 47 related works from this author

On X-saturated formations of finite groups

2005

[EN] In the paper, a Frattini-like subgroup associated with a class X of simple groups is introduced and analysed. The corresponding X-saturated formations are exactly the X-local ones introduced by Förster. Our techniques are also very useful to highlight the properties and behaviour of omega-local formations. In fact, extensions and improvements of several results of Shemetkov are natural consequences of our study.

Class (set theory)Finite groupAlgebra and Number TheorySaturated formationGrups Teoria deP-saturated formationX-local formationLocal formationOmega-local formationGeneralized frattini subgroupOmega-saturated formationAlgebraSimple groupX-saturated formationÀlgebraFinite groupAlgebra over a fieldMATEMATICA APLICADAMathematics
researchProduct

On a class of p-soluble groups

2005

[EN] Let p be a prime. The class of all p-soluble groups G such that every p-chief factor of G is cyclic and all p-chief factors of G are G-isomorphic is studied in this paper. Some results on T-, PT-, and PST -groups are also obtained.

Pure mathematicsClass (set theory)Finite groupAlgebra and Number TheoryApplied MathematicsGrups Teoria dePrime (order theory)CombinatoricsPermutabilitySubnormalityÀlgebraAlgebra over a fieldFinite groupMATEMATICA APLICADAMathematics
researchProduct

On large orbits of subgroups of linear groups

2019

The main aim of this paper is to prove an orbit theorem and to apply it to obtain a result that can be regarded as a significant step towards the solution of Gluck’s conjecture on large character degrees of finite solvable groups.

Pure mathematicsSolvable groupApplied MathematicsGeneral MathematicsMatemàticaMathematics
researchProduct

On a graph related to permutability in finite groups

2010

For a finite group G we define the graph $\Gamma(G)$ to be the graph whose vertices are the conjugacy classes of cyclic subgroups of G and two conjugacy classes $\{\mathcal {A}, \mathcal {B}\}$ are joined by an edge if for some $\{A \in \mathcal {A},\, B \in \mathcal {B}\, A\}$ and B permute. We characterise those groups G for which $\Gamma(G)$ is complete.

Discrete mathematicsFinite groupSoluble groupApplied MathematicsGrups Teoria deGraphGraphCombinatoricsMathematics::Group TheoryConjugacy classPermutabilityÀlgebraFinite groupMATEMATICA APLICADAMathematics
researchProduct

Permutable subnormal subgroups of finite groups

2009

The aim of this paper is to prove certain characterization theorems for groups in which permutability is a transitive relation, the so called PT -groups. In particular, it is shown that the finite solvable PT -groups, the finite solvable groups in which every subnormal subgroup of defect two is permutable, the finite solvable groups in which every normal subgroup is permutable sensitive, and the finite solvable groups in which conjugatepermutability and permutability coincide are all one and the same class. This follows from our main result which says that the finite modular p-groups, p a prime, are those p-groups in which every subnormal subgroup of defect two is permutable or, equivalentl…

Normal subgroupClass (set theory)PermutableMathematics::CombinatoricsGeneral MathematicsSubnormalModular p-groupGrups Teoria deCharacterization (mathematics)Prime (order theory)PT -groupSubnormal subgroupCombinatoricsMathematics::Group TheorySolvable groupPermutable primeÀlgebraAlgebra over a fieldMATEMATICA APLICADAMathematicsConjugate-Permutable
researchProduct

A generalization to Sylow permutability of pronormal subgroups of finite groups

2020

[EN] In this note, we present a new subgroup embedding property that can be considered as an analogue of pronormality in the scope of permutability and Sylow permutability in finite groups. We prove that finite PST-groups, or groups in which Sylow permutability is a transitive relation, can be characterized in terms of this property, in a similar way as T-groups, or groups in which normality is transitive, can be characterized in terms of pronormality.

Pure mathematicsGeneralizationPropermutabilityFinite groups; subgroup embedding property; permutability; pro-S-permutability; propermutability01 natural sciencesMathematics::Group TheoryPermutabilitypermutabilityFinite group0101 mathematicsPro-S-permutabilityComputer Science::DatabasesMathematicsFinite groupAlgebra and Number Theorysubgroup embedding propertySubgroup embedding propertyApplied Mathematics010102 general mathematicsSylow theoremspro-S-permutabilityFinite groups010101 applied mathematicsEmbeddingpropermutabilityMATEMATICA APLICADAMatemàticaJournal of Algebra and Its Applications
researchProduct

Products of formations of finite groups

2006

[EN] In this paper criteria for a product of formations to be X-local, X a class of simple groups, are obtained. Some classical results on products of saturated formations appear as particular cases.

Class (set theory)Finite groupAlgebra and Number TheoryGrups Teoria deX-local formationOmega-local formationAlgebraProduct (mathematics)Simple groupÀlgebraFinite groupMATEMATICA APLICADAFormation productMathematics
researchProduct

ON A QUESTION OF BEIDLEMAN AND ROBINSON

2002

[EN] In [J. C. Beidleman, D. J. S. Robinson, J. Algebra 1997, 191, 686--703, Theorem A], Beidleman and Robinson proved that if a group satisfies the permutizer condition, it is soluble, its chief factors have order a prime number or 4 and G induces the full group of automorphisms in the chief factors of order 4. In this paper, we show that the converse of this theorem is false by showing some counterexamples. We also find some sufficient conditions for a group satisfying the converse of that theorem to satisfy the permutizer condition.

Pure mathematicsAlgebra and Number TheoryFinite soluble groupGroup (mathematics)Permutizer conditionPrime numberGrups Teoria deAutomorphismCombinatoricsConverseChief factorOrder (group theory)ÀlgebraAlgebra over a fieldMATEMATICA APLICADAMathematicsCounterexampleCommunications in Algebra
researchProduct

A note on the rational canonical form of an endomorphism of a vector space of finite dimension

2018

[EN] In this note, we give an easy algorithm to construct the rational canonical form of a square matrix or an endomorphism h of a finite dimensional vector space which does not depend on either the structure theorem for finitely generated modules over principal ideal domains or matrices over the polynomial ring. The algorithm is based on the construction of an element whose minimum polynomial coincides with the minimum polynomial of the endomorphism and on the fact that the h-invariant subspace generated by such an element admits an h-invariant complement. It is also shown that this element can be easily obtained without the factorisation of a polynomial as a product of irreducible polynom…

Algebra and Number TheoryEndomorphismFoundation (engineering)Library scienceMatrius (Matemàtica)Minimum polynomialWork (electrical)EndomorphismNatural sciencemedia_common.cataloged_instanceSimilarity of matricesCanonical formRational canonical formÀlgebraEuropean unionChinaMATEMATICA APLICADAAnalysismedia_commonMathematicsVector space
researchProduct

A note on a result of Guo and Isaacs about p-supersolubility of finite groups

2016

In this note, global information about a finite group is obtained by assuming that certain subgroups of some given order are S-semipermutable. Recall that a subgroup H of a finite group G is said to be S-semipermutable if H permutes with all Sylow subgroups of G of order coprime to . We prove that for a fixed prime p, a given Sylow p-subgroup P of a finite group G, and a power d of p dividing such that , if is S-semipermutable in for all normal subgroups H of P with , then either G is p-supersoluble or else . This extends the main result of Guo and Isaacs in (Arch. Math. 105:215-222 2015). We derive some theorems that extend some known results concerning S-semipermutable subgroups.

Discrete mathematicsFinite groupCoprime integersP-supersoluble groupGeneral MathematicsS-semipermutable subgroup010102 general mathematicsSylow theoremsGrups Teoria deOrder (ring theory)01 natural sciencesPrime (order theory)CombinatoricsGlobal informationLocally finite group0103 physical sciences010307 mathematical physicsFinite group0101 mathematicsMATEMATICA APLICADAMatemàticaMathematicsArchiv der Mathematik
researchProduct

On a class of supersoluble groups

2014

A subgroup H of a finite group G is said to be S-semipermutable in G if H permutes with every Sylow q-subgroup of G for all primes q not dividing |H|. A finite group G is an MS-group if the maximal subgroups of all the Sylow subgroups of G are S-semipermutable in G. The aim of the present paper is to characterise the finite MS-groups.

Class (set theory)Finite groupGeneral MathematicsSylow theoremsGrups Teoria deAlgebraCombinatoricsBT-groupMS-groupÀlgebraAlgebra over a fieldFinite groupMATEMATICA APLICADASoluble PST-groupT0-groupMathematics
researchProduct

On Large Orbits of Actions of Finite Soluble Groups: Applications

2020

The main aim of this survey paper is to present two orbit theorems and to show how to apply them to obtain a result that can be regarded as a significant step towards the solution of Gluck’s conjecture on large character degrees of finite soluble groups. We also show how to apply them to solve questions about intersections of some conjugacy families of subgroups of finite soluble groups.

Pure mathematicsCharacter (mathematics)ConjectureConjugacy classAlgebra over a fieldOrbit (control theory)Mathematics
researchProduct

On finite involutive Yang–Baxter groups

2021

[EN] A group G is said to be an involutive Yang¿Baxter group, or simply an IYB-group, if it is isomorphic to the permutation group of an involutive, nondegenerate set-theoretic solution of the Yang-Baxter equation. We give new sufficient conditions for a group that can be factorised as a product of two IYB-groups to be an IYB-group. Some earlier results are direct consequences of our main theorem.

Yang–Baxter equationApplied MathematicsGeneral MathematicsYang-Baxter equationInvolutive nondegenerate solutionsInvolutive Yang-Baxter groupMATEMATICA APLICADAMatemàticaFinite left braceMathematical physicsMathematicsProceedings of the American Mathematical Society
researchProduct

On finite groups with many supersoluble subgroups

2017

[EN] The solubility of a finite group with less than 6 non-supersoluble subgroups is confirmed in the paper. Moreover we prove that a finite insoluble group has exactly 6 non-supersoluble subgroups if and only if it is isomorphic to A5 or SL2 (5). Furthermore, it is shown that a finite insoluble group has exactly 22 non-nilpotent subgroups if and only if it is isomorphic to A5 or SL2 (5). This confirms a conjecture of Zarrin (Arch Math (Basel) 99:201 206, 2012).

0301 basic medicineFinite groupConjectureSoluble groupGroup (mathematics)General Mathematics010102 general mathematicsGrups Teoria de01 natural sciencesCombinatoricsMathematics::Group Theory03 medical and health sciences030104 developmental biologyLocally finite groupSupersoluble subgroup0101 mathematicsFinite groupMathematics::Representation TheoryMATEMATICA APLICADAMatemàticaMathematics
researchProduct

On large orbits of supersoluble subgroups of linear groups

2019

The research of this paper has been supported by the grant MTM2014-54707-C3-1-P from the Ministerio de Economia y Competitividad, Spain, and FEDER, European Union, by the grant PGC2018-095140-B-I00 from the Ministerio de Ciencia, Innovacion y Universidades and the Agencia Estatal de Investigacion, Spain, and FEDER, European Union, and by the grant PROMETEO/2017/057 from the Generalitat, Valencian Community, Spain. The first author is supported by the predoctoral grant 201606890006 from the China Scholarship Council. The second author is supported by the grant 11401597 from the National Science Foundation of Chin

Soluble groupGeneral MathematicsRegular orbitValencian communityScholarshipLinear groupGroup representationmedia_common.cataloged_instanceRegular orbitEuropean unionFinite groupMATEMATICA APLICADAHumanitiesMatemàticamedia_commonMathematics
researchProduct

Sylow permutable subnormal subgroups of finite groups

2002

[EN] An extension of the well-known Frobenius criterion of p-nilpotence in groups with modular Sylow p-subgroups is proved in the paper. This result is useful to get information about the classes of groups in which every subnormal subgroup is permutable and Sylow permutable.

Complement (group theory)Finite groupAlgebra and Number TheorySylow theoremsGrups Teoria deExtension (predicate logic)CombinatoricsSubnormal subgroupMathematics::Group TheoryLocally finite groupPermutable subgroupComponent (group theory)ÀlgebraPermutable primeFinite groupMATEMATICA APLICADASubnormal subgroupMathematics
researchProduct

La Prova Cangur en la Comunitat Valenciana

2009

[EN] The Kangaroo competition, with more than five million participants, has become during the last years one of the main channels to disseminate Mathematics around the young people around the world. In this note we describe the Kangaroo competition and we comment some of its characteristics in the Valencian Community.

lcsh:L7-991Matemàtica Ensenyamentlcsh:Education (General)
researchProduct

Formations of Monoids, Congruences, and Formal Languages

2015

The main goal in this paper is to use a dual equivalence in automata theory started in [25] and developed in [3] to prove a general version of the Eilenberg-type theorem presented in [4]. Our principal results confirm the existence of a bijective correspondence between three concepts; formations of monoids, formations of languages and formations of congruences. The result does not require finiteness on monoids, nor regularity on languages nor finite index conditions on congruences. We relate our work to other results in the field and we include applications to non-r-disjunctive languages, Reiterman s equational description of pseudovarieties and varieties of monoids.

Pure mathematicsGeneral Computer ScienceApplied MathematicsData ScienceCWI Technical Report reportFormationsLlenguatges de programacióAbstract family of languagesCongruence relationlcsh:QA75.5-76.95Formal languagesMathematics::Category TheoryFormal languageComputingMethodologies_DOCUMENTANDTEXTPROCESSINGBijectionAutomata theorylcsh:Electronic computers. Computer scienceÀlgebraEquivalence (formal languages)SemigroupsMATEMATICA APLICADAAlgorithmAutomata theoryMathematicsScientific Annals of Computer Science
researchProduct

SOME SOLUBILITY CRITERIA IN FACTORISED GROUPS

2012

In this paper, solubility of groups factorised as a product of two subgroups which are connected by certain permutability properties is studied.

Soluble groupComputational chemistryGeneral MathematicsProduct (mathematics)Mutually m-permutable productSolubilityMATEMATICA APLICADAFactorised groupMathematicsBulletin of the Australian Mathematical Society
researchProduct

Large characteristically simple sections of finite groups

2021

In this paper we prove that if G is a group for which there are k non-Frattini chief factors isomorphic to a characteristically simple group A, then G has a normal section C/R that is the direct product of k minimal normal subgroups of G/R isomorphic to A. This is a significant extension of the notion of crown for isomorphic chief factors.

Normal subgroupAlgebra and Number TheoryGroup (mathematics)Applied MathematicsExtension (predicate logic)Characteristically simple groupCombinatoricsComputational MathematicsSection (category theory)Simple (abstract algebra)Geometry and TopologyMatemàticaAnalysisDirect productMathematics
researchProduct

On finiteJ-groups

2003

AbstractCharacterisations of finite groups in which normality is a transitive relation are presented in the paper. We also characterise the finite groups in which every subgroup is either permutable or coincides with its permutiser as the groups in which every subgroup is permutable.

Operations researchMathematical societyGeneral MathematicsLibrary scienceMathematicsJournal of the Australian Mathematical Society
researchProduct

Some classes of finite groups and mutually permutable products

2008

[EN] This paper is devoted to the study of mutually permutable products of finite groups. A factorised group G=AB is said to be a mutually permutable product of its factors A and B when each factor permutes with every subgroup of the other factor. We prove that mutually permutable products of Y-groups (groups satisfying a converse of Lagrange's theorem) and SC-groups (groups whose chief factors are simple) are SC-groups, by means of a local version. Next we show that the product of pairwise mutually permutable Y-groups is supersoluble. Finally, we give a local version of the result stating that when a mutually permutable product of two groups is a PST-group (that is, a group in which every …

Pst-groupFinite groupMathematics::CombinatoricsAlgebra and Number TheoryY-groupGrups Teoria deSc-groupAlgebraMathematics::Group TheoryPermutabilityMutually permutable productÀlgebraPermutable primeFinite groupAlgebra over a fieldMATEMATICA APLICADAMathematicsJournal of Algebra
researchProduct

Bounds on the number of maximal subgroups of finite groups

2023

In this paper we obtain significant bounds for the number of maximal subgroups of a given index of a finite group. These results allow us to give new bounds for the number of random generators needed to generate a finite $d$-generated group with high probability.

Mathematics (miscellaneous)Applied MathematicsFOS: MathematicsGroup Theory (math.GR)20P05 20E07 20E28MatemàticaMathematics - Group Theory
researchProduct

On minimal non-supersoluble groups

2007

[EN] The aim of this paper is to classify the finite minimal non-p-supersoluble groups, p a prime number, in the p-soluble universe.

Finite group20F16Supersoluble groupbusiness.industryMathematical societyGeneral MathematicsGrups Teoria definite groupsAlgebraCritical groupPublishing20D10Àlgebrasupersoluble groupsFinite groupAlgebra over a fieldMATEMATICA APLICADAbusinesscritical groupsAlgorithmCritical groupMathematics
researchProduct

On totally permutable products of finite groups

2005

[EN] The behaviour of totally permutable products of finite groups with respect to certain classes of groups is studied in the paper. The results are applied to obtain information about totally permutable products of T, PT, and PST-groups.

AlgebraTotally permutable productAlgebra and Number TheoryMathematics::CombinatoricsTransitive permutabilityFinite soluble groupFinite nilpotent groupFormationPermutable primeAlgebra over a fieldMATEMATICA APLICADAMatemàticaMathematics
researchProduct

Maximal subgroups and PST-groups

2013

A subgroup H of a group G is said r to permute with a subgroup K of G if HK is a subgroup of G. H is said to be permutable (resp. S-permutable) if it permutes with all the subgroups (resp. Sylow subgroups) of G. Finite groups in which permutability (resp. S-permutability) is a transitive relation are called PT-groups (resp. PST-groups). PT-, PST- and T-groups, or groups in which normality is transitive, have been extensively studied and characterised. Kaplan [Kaplan G., On T-groups, supersolvable groups, and maxmial subgroups, Arch. Math. (Basel), 2011, 96(1), 19-25)] presented some new characterisations of soluble T-groups. The main goal of this paper is to establish PT- and PST-versions o…

20e2820d05General MathematicsCombinatoricsLocally finite groupPermutabilityQA1-939Permutable prime20d10Algebra over a fieldMathematicsDiscrete mathematicsTransitive relation20f16Group (mathematics)20e15Sylow theoremsGrups Teoria deSylow-permutabilitySupersolubilityFinite groupsNumber theoryMaximal subgroupsÀlgebraMATEMATICA APLICADAMathematics
researchProduct

A description based on languages of the final non-deterministic automaton

2014

The study of the behaviour of non-deterministic automata has traditionally focused on the languages which can be associated to the different states. Under this interpretation, the different branches that can be taken at every step are ignored. However, we can also take into account the different decisions which can be made at every state, that is, the branches that can be taken, and these decisions might change the possible future behaviour. In this case, the behaviour of the automata can be described with the help of the concept of bisimilarity. This is the kind of description that is usually obtained when the automata are regarded as labelled transition systems or coalgebras. Contrarily t…

Nested wordTheoretical computer scienceGeneral Computer ScienceTimed automatonLlenguatges de programacióω-automatonTheoretical Computer ScienceDeterministic pushdown automatonCoalgebraFinal automatonDeterministic automatonQuantum finite automataAutomatitzacióComputer Science::DatabasesMathematicsDiscrete mathematicsNonlinear Sciences::Cellular Automata and Lattice GasesNon-deterministic automatonMobile automatonBisimilarityComputer Science::Programming LanguagesAutomata theoryFormal languageÀlgebraMATEMATICA APLICADAComputer Science::Formal Languages and Automata Theory
researchProduct

El papel de los coordinadores en la Olimpiada Matemática Internacional

2009

[EN] In this note, the role of the coordinators in the International Mathematical Olympiad is described.

lcsh:L7-991Matemàtica Ensenyamentlcsh:Education (General)Modelling in Science Education and Learning
researchProduct

Primitive subgroups and PST-groups

2014

AbstractAll groups considered in this paper are finite. A subgroup $H$ of a group $G$ is called a primitive subgroup if it is a proper subgroup in the intersection of all subgroups of $G$ containing $H$ as a proper subgroup. He et al. [‘A note on primitive subgroups of finite groups’, Commun. Korean Math. Soc. 28(1) (2013), 55–62] proved that every primitive subgroup of $G$ has index a power of a prime if and only if $G/ \Phi (G)$ is a solvable PST-group. Let $\mathfrak{X}$ denote the class of groups $G$ all of whose primitive subgroups have prime power index. It is established here that a group $G$ is a solvable PST-group if and only if every subgroup of $G$ is an $\mathfrak{X}$-group.

Class (set theory)Group (mathematics)General MathematicsGrups Teoria deFinite groupsT_0-groupsPrime (order theory)CombinatoricsMathematics::Group TheorySubgroupPrimitive subgroupsSolvable PST-groupsÀlgebraAlgebra over a fieldMATEMATICA APLICADAPrime powerMathematics
researchProduct

The Structure Group and the Permutation Group of a Set-Theoretic Solution of the Quantum Yang–Baxter Equation

2021

We describe the left brace structure of the structure group and the permutation group associated to an involutive, non-degenerate set-theoretic solution of the quantum YangBaxter equation by using the Cayley graph of its permutation group with respect to its natural generating system. We use our descriptions of the additions in both braces to obtain new properties of the structure and the permutation groups and to recover some known properties of these groups in a more transparent way.

CombinatoricsSet (abstract data type)Cayley graphYang–Baxter equationGroup (mathematics)Mathematics::Quantum AlgebraGeneral MathematicsStructure (category theory)Permutation groupMatemàticaQuantumMathematicsMediterranean Journal of Mathematics
researchProduct

Some local properties defining $\mathcal T_0$-groups and related classes of groups

2016

We call $G$ a $\operatorname{Hall}_{\mathcal X}$-group if there exists a normal nilpotent subgroup $N$ of $G$ for which $G/N'$ is an ${\mathcal X}$-group. We call $G$ a ${\mathcal T}_0$-group provided $G/\Phi(G)$ is a ${\mathcal T}$-group, that is, one in which normality is a transitive relation. We present several new local classes of groups which locally define $\operatorname{Hall}_{\mathcal X}$-groups and ${\mathcal T}_0$-groups where ${\mathcal X}\in\{ {\mathcal T},\mathcal {PT},\mathcal {PST}\}$; the classes $\mathcal {PT}$ and $\mathcal {PST}$ denote, respectively, the classes of groups in which permutability and S-permutability are transitive relations.

Discrete mathematicsTransitive relation$\mathcal{T}$-groupGroup (mathematics)General Mathematics010102 general mathematics$\mathcal{PST}$-group010103 numerical & computational mathematics01 natural sciencesFitting subgroupCombinatoricsSubnormal subgroupNilpotentSubgroupT-group20D1020D350101 mathematicsAlgebra over a fieldfinite solvable groupSubnormal subgroup20D20MathematicsPublicacions Matemàtiques
researchProduct

Some subgroup embeddings in finite groups: A mini review

2015

[EN] In this survey paper several subgroup embedding properties related to some types of permutability are introduced and studied. ª 2014 Production and hosting by Elsevier B.V. on behalf of Cairo University

Computer scienceMini Reviewmacromolecular substancesS-permutabilityMini reviewMathematics::Group TheoryComputingMethodologies_SYMBOLICANDALGEBRAICMANIPULATIONPermutabilityPrimitive subgroupAlgebra over a fieldFinite grouplcsh:Science (General)GeneralFinite grouplcsh:R5-920MultidisciplinaryMathematics::Combinatoricsmusculoskeletal neural and ocular physiologyAlgebranervous systemEmbeddingQuasipermutable subgrouplcsh:Medicine (General)MATEMATICA APLICADAAlgorithmSemipermutabilityMathematicsofComputing_DISCRETEMATHEMATICSlcsh:Q1-390Journal of Advanced Research
researchProduct

Group Extensions and Graphs

2016

A classical result of Gaschütz affirms that given a finite A-generated group G and a prime p, there exists a group G# and an epimorphism phi: G# ---> G whose kernel is an elementary abelian p-group which is universal among all groups satisfying this property. This Gaschütz universal extension has also been described in the mathematical literature with the help of the Cayley graph. We give an elementary and self-contained proof of the fact that this description corresponds to the Gaschütz universal extension. Our proof depends on another elementary proof of the Nielsen-Schreier theorem, which states that a subgroup of a free group is free.

Information retrievalOperations researchNoticebusiness.industryGeneral Mathematics010102 general mathematicsGrups Teoria de01 natural sciencesGraphGraph010101 applied mathematicsDisk formattingMathematics::Group TheoryPublishingGroup0101 mathematicsbusinessMATEMATICA APLICADAGroup extensionMatemàticaMathematics
researchProduct

On a class of generalised Schmidt groups

2015

In this paper families of non-nilpotent subgroups covering the non-nilpotent part of a finite group are considered. An A 5 -free group possessing one of these families is soluble, and soluble groups with this property have Fitting length at most three. A bound on the number of primes dividing the order of the group is also obtained.

Group (mathematics)Applied MathematicsMathematics::Rings and AlgebrasGrups Teoria deCycle graph (algebra)Sporadic groupFinite groupsNon-abelian groupCombinatoricsMathematics::Group TheoryGroup of Lie typeLocally finite groupSimple groupNilpotent groupsMaximal subgroupsOrder (group theory)ÀlgebraMATEMATICA APLICADAMathematics::Representation TheoryMathematicsAnnali di Matematica Pura ed Applicata (1923 -)
researchProduct

Sylow permutable subnormal subgroups of finite groups II

2001

[EN] In this paper a local version of Agrawal's theorem about the structure of finite groups in which Sylow permutability is transitive is given. The result is used to obtain new characterisations of this class of finite groups.

Permutability conditionsTransitive relationClass (set theory)Soluble groupGeneral MathematicsSubnormal p'-perfect subgroupSylow theoremsStructure (category theory)Grups Teoria dePst_p-groupHall subgroupsCombinatoricsLocally finite groupComponent (group theory)ÀlgebraPermutable primeAlgebra over a fieldMathematicsBulletin of the Australian Mathematical Society
researchProduct

Finite groups with all minimal subgroups solitary

2016

We give a complete classification of the finite groups with a unique subgroup of order p for each prime p dividing its order. All the groups considered in this paper will be finite. One of the most fruitful lines in the research in abstract group theory during the last years has been the study of groups in which the members of a certain family of subgroups satisfy a certain subgroup embedding property. The family of the subgroups of prime order (also called minimal subgroups) has attracted the interest of many mathematicians. For example, a well-known result of Itˆo (see [8, Kapitel III, Satz 5.3; 9]) states that a group of odd order with all minimal subgroups in the center is nilpotent. Th…

p-groupNormal subgroupFinite groupAlgebra and Number TheoryApplied MathematicsAstrophysics::Instrumentation and Methods for AstrophysicsMinimal subgroupGrups Teoria deComputer Science::Computation and Language (Computational Linguistics and Natural Language and Speech Processing)Fitting subgroupCombinatoricsMathematics::Group TheoryLocally finite groupExtra special groupComputer Science::General LiteratureOmega and agemo subgroupSolitary subgroupÀlgebraIndex of a subgroupFinite groupMATEMATICA APLICADAMathematics
researchProduct

On second minimal subgroups of Sylow subgroups of finite groups

2011

A subgroup H of a finite group G is a partial CAP-subgroup of G if there is a chief series of G such that H either covers or avoids its chief factors. Partial cover and avoidance property has turned out to be very useful to clear up the group structure. In this paper, finite groups in which the second minimal subgroups of their Sylow p-subgroups, p a fixed prime, are partial CAP-subgroups are completely classified.

p-groupComplement (group theory)Finite groupAlgebra and Number TheorySupersoluble groupSylow theoremsCombinatoricsNormal p-complementMathematics::Group TheorySecond minimal subgroupLocally finite groupSimple groupOmega and agemo subgroupFinite groupMATEMATICA APLICADAMathematicsPartial CAP-subgroupPartial cap-group
researchProduct

On finite soluble groups in which Sylow permutability is a transitive relation

2003

A characterisation of finite soluble groups in which Sylow permutability is a transitive relation by means of subgroup embedding properties enjoyed by all the subgroups is proved in the paper. The key point is an extension of a subnormality criterion due to Wielandt.

Finite groupTransitive relationGeneral MathematicsSylow theoremsGrups Teoria deExtension (predicate logic)CombinatoricsMathematics::Group TheoryKey pointLocally finite groupPermutabilitySubnormalityEmbeddingÀlgebraFinite groupAlgebra over a fieldMATEMATICA APLICADAMathematicsActa Mathematica Hungarica
researchProduct

On the p-length of some finite p-soluble groups

2014

The main aim of this paper is to give structural information of a finite group of minimal order belonging to a subgroup-closed class of finite groups and whose $p$-length is greater than $1$, $p$ a prime number. Alternative proofs and improvements of recent results about the influence of minimal $p$-subgroups on the $p$-nilpotence and $p$-length of a finite group arise as consequences of our study

Normal subgroupSemidirect productFinite groupPure mathematicsClass (set theory)Direct summandGeneral MathematicsPrime numberGrups Teoria deMaximal subgroupMaximal subgroupNormal subgroupApplications of MathematicsTheoretical Mathematical and Computational PhysicsSemidirect productOrder (group theory)ÀlgebraAlgebra over a fieldFinite groupMATEMATICA APLICADAMathematics
researchProduct

On some classes of supersoluble groups

2007

[EN] Finite groups G for which for every subgroup H and for all primes q dividing the index |G:H| there exists a subgroup K of G such that H is contained in K and |K:H|=q are called Y-groups. Groups in which subnormal subgroups permute with all Sylow subgroups are called PST-groups. In this paper a local version of the Y-property leading to a local characterisation of Y-groups, from which the classical characterisation emerges, is introduced. The relationship between PST-groups and Y-groups is also analysed.

p-groupNormal subgroupDiscrete mathematicsComplement (group theory)Lagrange theoremAlgebra and Number TheorySylow theoremsGrups Teoria deSylow subgroupFitting subgroupCombinatoricsSubgroupLocally finite groupPermutabilityÀlgebraIndex of a subgroupFinite groupMATEMATICA APLICADAMathematicsJournal of Algebra
researchProduct

On self-normalising subgroups of finite groups

2010

[EN] The aim of this paper is to characterise the classes of groups in which every subnormal subgroup is normal, permutable, or S-permutable by the embedding of the subgroups (respectively, subgroups of prime power order) in their normal, permutable, or S-permutable closure, respectively.

Discrete mathematicsFinite groupPst-groupAlgebra and Number TheoryMathematics::CombinatoricsGrups Teoria deAlgebraMathematics::Group TheoryT-groupPt-groupT-groupPermutabilitySylow permutabilityÀlgebraAlgebra over a fieldFinite groupPermutable closureSubnormal closureMATEMATICA APLICADAGroup theoryMathematics
researchProduct

On finite p-groups of supersoluble type

2021

Abstract A finite p-group S is said to be of supersoluble type if every fusion system over S is supersoluble. The main aim of this paper is to characterise the finite p-groups of supersoluble type. Abelian and metacyclic p-groups of supersoluble type are completely described. Furthermore, we show that the Sylow p-subgroups of supersoluble type of a finite simple group must be cyclic.

Pure mathematicsAlgebra and Number Theory010102 general mathematicsSylow theoremsType (model theory)01 natural sciencesFusion systemSimple group0103 physical sciencesÀlgebra010307 mathematical physics0101 mathematicsAbelian groupMatemàticaMathematicsJournal of Algebra
researchProduct

Algorithms for permutability in finite groups

2013

In this paper we describe some algorithms to identify permutable and Sylow-permutable subgroups of finite groups, Dedekind and Iwasawa finite groups, and finite T-groups (groups in which normality is transitive), PT-groups (groups in which permutability is transitive), and PST-groups (groups in which Sylow permutability is transitive). These algorithms have been implemented in a package for the computer algebra system GAP.

General MathematicsS-permutable subgroupIwasawa groups-permutable subgrouppermutable subgroupiwasawa groupdedekind grouppt-group20-04CombinatoricsMathematics::Group TheoryT-grouppst-groupT-groupQA1-93920d10MathematicsFinite groupDedekind groupMathematics::CombinatoricsalgorithmGroup (mathematics)Sylow theoremsGrups Teoria deDedekind groupAlgorithmt-groupPST-groupIwasawa groupfinite groupPermutable subgroup [Finite group]Classification of finite simple groupsCA-groupPT-groupÀlgebraFinite group: Permutable subgroupMATEMATICA APLICADAAlgorithm20d20MathematicsOpen Mathematics
researchProduct

The exact bounds for the degree of commutativity of a p-group of maximal class, I

2002

Abstract The first major study of p-groups of maximal class was made by Blackburn in 1958. He showed that an important invariant of these groups is the ‘degree of commutativity.’ Recently (1995) Fernandez-Alcober proved a best possible inequality for the degree of commutativity in terms of the order of the group. Recent computations for primes up to 43 show that sharper results can be obtained when an additional invariant is considered. A series of conjectures about this for all primes have been recorded in [A. Vera-Lopez et al., preprint]. In this paper, we prove two of these conjectures.

Combinatoricsp-groupClass (set theory)Pure mathematicsAlgebra and Number TheoryDegree (graph theory)Group (mathematics)Order (group theory)PreprintInvariant (mathematics)Commutative propertyMathematicsJournal of Algebra
researchProduct

On finite groups generated by strongly cosubnormal subgroups

2003

[EN] Two subgroups A and B of a group G are cosubnormal if A and B are subnormal in their join and are strongly cosubnormal if every subgroup of A is cosubnormal with every subgroup of B. We find necessary and sufficient conditions for A and B to be strongly cosubnormal in and, if Z is the hypercentre of G=, we show that A and B are strongly cosubnormal if and only if G/Z is the direct product of AZ/Z and BZ/Z. We also show that projectors and residuals for certain formations can easily be constructed in such a group. Two subgroups A and B of a group G are N-connected if every cyclic subgroup of A is cosubnormal with every cyclic subgroup of B (N denotes the class of nilpotent groups). Thou…

Normal subgroupFinite groupHypercentreAlgebra and Number TheoryStrongly cosubnormal subgroupsFormationN-connected subgroupsFitting subgroupCombinatoricsSubnormal subgroupSubgroupLocally finite groupCharacteristic subgroupIndex of a subgroupFinite groupMATEMATICA APLICADAMatemàticaSubnormal subgroupMathematicsNilpotent group
researchProduct

On the supersoluble hypercentre of a finite group

2016

[EN] We give some sufficient conditions for a normal p-subgroup P of a finite group G to have every G-chief factor below it cyclic. The S-permutability of some p-subgroups of O^p(G)plays an important role. Some known results can be reproved and some others appear as corollaries of our main theorems.

Discrete mathematicsFinite groupP-supersoluble groupGeneral MathematicsS-semipermutable subgroup010102 general mathematicsGrups Teoria de01 natural sciencesMathematics::Group Theory0103 physical sciences010307 mathematical physicsFinite group0101 mathematicsMATEMATICA APLICADAMatemàticaMathematicsMonatshefte für Mathematik
researchProduct

On finite minimal non-nilpotent groups

2005

[EN] A critical group for a class of groups X is a minimal non-X-group. The critical groups are determined for various classes of finite groups. As a consequence, a classification of the minimal non-nilpotent groups (also called Schmidt groups) is given, together with a complete proof of Gol¿fand¿s theorem on maximal Schmidt groups.

Pure mathematicsFinite groupPst-groupMathematical societyApplied MathematicsGeneral MathematicsGrups Teoria deSchmidt groupSylow subgroupSylow-permutable subgroupAlgebraMinimal non-nilpotent groupNilpotentCritical groupÀlgebraAlgebra over a fieldFinite groupClass of finite groupsMATEMATICA APLICADACritical groupVolume (compression)Mathematics
researchProduct