6533b834fe1ef96bd129cb56

RESEARCH PRODUCT

Primitive subgroups and PST-groups

James C. BeidlemanRamon Esteban-romeroAdolfo Ballester-bolinches

subject

Class (set theory)Group (mathematics)General MathematicsGrups Teoria deFinite groupsT_0-groupsPrime (order theory)CombinatoricsMathematics::Group TheorySubgroupPrimitive subgroupsSolvable PST-groupsÀlgebraAlgebra over a fieldMATEMATICA APLICADAPrime powerMathematics

description

AbstractAll groups considered in this paper are finite. A subgroup $H$ of a group $G$ is called a primitive subgroup if it is a proper subgroup in the intersection of all subgroups of $G$ containing $H$ as a proper subgroup. He et al. [‘A note on primitive subgroups of finite groups’, Commun. Korean Math. Soc. 28(1) (2013), 55–62] proved that every primitive subgroup of $G$ has index a power of a prime if and only if $G/ \Phi (G)$ is a solvable PST-group. Let $\mathfrak{X}$ denote the class of groups $G$ all of whose primitive subgroups have prime power index. It is established here that a group $G$ is a solvable PST-group if and only if every subgroup of $G$ is an $\mathfrak{X}$-group.

10.1017/s0004972713000592http://hdl.handle.net/10550/47671