6533b7d2fe1ef96bd125e36c

RESEARCH PRODUCT

On a graph related to permutability in finite groups

Adolfo Ballester-bolinchesJohn CosseyRamon Esteban-romero

subject

Discrete mathematicsFinite groupSoluble groupApplied MathematicsGrups Teoria deGraphGraphCombinatoricsMathematics::Group TheoryConjugacy classPermutabilityÀlgebraFinite groupMATEMATICA APLICADAMathematics

description

For a finite group G we define the graph $\Gamma(G)$ to be the graph whose vertices are the conjugacy classes of cyclic subgroups of G and two conjugacy classes $\{\mathcal {A}, \mathcal {B}\}$ are joined by an edge if for some $\{A \in \mathcal {A},\, B \in \mathcal {B}\, A\}$ and B permute. We characterise those groups G for which $\Gamma(G)$ is complete.

10.1007/s10231-009-0124-7http://hdl.handle.net/10550/47148