6533b7d4fe1ef96bd126290c

RESEARCH PRODUCT

Permutable subnormal subgroups of finite groups

Jack SchmidtAdolfo Ballester-bolinchesJohn CosseyJames C. BeidlemanM. F. RaglandRamon Esteban-romero

subject

Normal subgroupClass (set theory)PermutableMathematics::CombinatoricsGeneral MathematicsSubnormalModular p-groupGrups Teoria deCharacterization (mathematics)Prime (order theory)PT -groupSubnormal subgroupCombinatoricsMathematics::Group TheorySolvable groupPermutable primeÀlgebraAlgebra over a fieldMATEMATICA APLICADAMathematicsConjugate-Permutable

description

The aim of this paper is to prove certain characterization theorems for groups in which permutability is a transitive relation, the so called PT -groups. In particular, it is shown that the finite solvable PT -groups, the finite solvable groups in which every subnormal subgroup of defect two is permutable, the finite solvable groups in which every normal subgroup is permutable sensitive, and the finite solvable groups in which conjugatepermutability and permutability coincide are all one and the same class. This follows from our main result which says that the finite modular p-groups, p a prime, are those p-groups in which every subnormal subgroup of defect two is permutable or, equivalently, in which every normal subgroup is permutable sensitive. However, there exist finite insolvable groups which are not PT -groups but all subnormal subgroups of defect two are permutable.

10.1007/s00013-009-2976-xhttp://hdl.handle.net/10550/47146