Search results for "3-manifolds"
showing 6 items of 6 documents
Dehn surgeries and smooth structures on 3-dimensional transitive Anosov flows.
2020
The present thesis is about Dehn surgeries and smooth structures associated with transitive Anosov flows in dimension three. Anosov flows constitute a very important class of dynamical systems, because of its persistent chaotic behaviour, as well as for its rich interaction with the topology of the ambient space. Even if a lot is known about the dynamical and ergodic properties of these systems, there is not a clear understanding about how to classify its different orbital equivalence classes. Until now, the biggest progress has been done in dimension three, where there is a family of techniques intended for the construction of Anosov flows called surgeries.During the realization of this th…
Topological classification of gradient-like diffeomorphisms on 3-manifolds
2004
Abstract We give a complete invariant, called global scheme , of topological conjugacy classes of gradient-like diffeomorphisms, on compact 3-manifolds. Conversely, we can realize any abstract global scheme by such a diffeomorphism.
The HOMFLY-PT polynomials of sublinks and the Yokonuma–Hecke algebras
2016
We describe completely the link invariants constructed using Markov traces on the Yokonuma-Hecke algebras in terms of the linking matrix and the HOMFLYPT polynomials of sublinks.
Some remarks on universal covers and groups
2014
We give a quick reviw of problems concerning the topological behavior of contractible covering spaces, from the point of view of the topology at infinity.
On the classification of Kim and Kostrikin manifolds
2006
International audience; We completely classify the topological and geometric structures of some series of closed connected orientable 3-manifolds introduced by Kim and Kostrikin in [20, 21] as quotient spaces of certain polyhedral 3-cells by pairwise identifications of their boundary faces. Then we study further classes of closed orientable 3-manifolds arising from similar polyhedral schemata, and describe their topological properties.
3-manifolds which are orbit spaces of diffeomorphisms
2008
Abstract In a very general setting, we show that a 3-manifold obtained as the orbit space of the basin of a topological attractor is either S 2 × S 1 or irreducible. We then study in more detail the topology of a class of 3-manifolds which are also orbit spaces and arise as invariants of gradient-like diffeomorphisms (in dimension 3). Up to a finite number of exceptions, which we explicitly describe, all these manifolds are Haken and, by changing the diffeomorphism by a finite power, all the Seifert components of the Jaco–Shalen–Johannson decomposition of these manifolds are made into product circle bundles.