Search results for "30C35"

showing 4 items of 4 documents

Accessible parts of boundary for simply connected domains

2018

For a bounded simply connected domain $\Omega\subset\mathbb{R}^2$, any point $z\in\Omega$ and any $0<\alpha<1$, we give a lower bound for the $\alpha$-dimensional Hausdorff content of the set of points in the boundary of $\Omega$ which can be joined to $z$ by a John curve with a suitable John constant depending only on $\alpha$, in terms of the distance of $z$ to $\partial\Omega$. In fact this set in the boundary contains the intersection $\partial\Omega_z\cap\partial\Omega$ of the boundary of a John sub-domain $\Omega_z$ of $\Omega$, centered at $z$, with the boundary of $\Omega$. This may be understood as a quantitative version of a result of Makarov. This estimate is then applied to obta…

General MathematicsBoundary (topology)30C35 26D1501 natural sciencesUpper and lower boundsOmegaDomain (mathematical analysis)CombinatoricsfunktioteoriaHardy inequality0103 physical sciencesSimply connected spaceClassical Analysis and ODEs (math.CA)FOS: MathematicsComplex Variables (math.CV)0101 mathematicsepäyhtälötMathematicsPointwiseMathematics - Complex VariablesApplied Mathematics010102 general mathematicsta111simply connected domainsMathematics - Classical Analysis and ODEsBounded functionContent (measure theory)010307 mathematical physicsJohn domainsProceedings of the American Mathematical Society
researchProduct

Intrinsic Hardy–Orlicz spaces of conformal mappings

2014

We define a new type of Hardy-Orlicz spaces of conformal mappings on the unit disk where in place of the value |f(x)| we consider the intrinsic path distance between f(x) and f(0) in the image domain. We show that if the Orlicz function is doubling then these two spaces are actually the same, and we give an example when the intrinsic Hardy-Orlicz space is strictly smaller.

Image domainPure mathematicsMathematics::Functional AnalysisMathematics - Complex VariablesmathematicsGeneral Mathematicsta111Mathematics::Classical Analysis and ODEsconforma mappingsConformal mapFunction (mathematics)Type (model theory)Space (mathematics)Path distanceUnit diskHardy–Orlicz spacesFOS: MathematicsComplex Variables (math.CV)30C35 (Primary) 30H10 (Secondary)Value (mathematics)MathematicsBulletin of the London Mathematical Society
researchProduct

Hardy-Orlicz Spaces of conformal densities

2014

We define and prove characterizations of Hardy-Orlicz spaces of conformal densities.

Pure mathematicsQuantitative Biology::BiomoleculesMathematics::Functional AnalysisHardy spacesMathematics::Complex Variables010102 general mathematicsta111Mathematics::Classical Analysis and ODEsConformal mapHardy spaceMathematics::Spectral Theoryconformal densities01 natural sciencesHardy-Orliczsymbols.namesakeMathematics - Classical Analysis and ODEs0103 physical sciencesClassical Analysis and ODEs (math.CA)FOS: Mathematicssymbols010307 mathematical physicsGeometry and Topology0101 mathematics30C35 (Primary) 30H10 (Secondary)MathematicsConformal Geometry and Dynamics
researchProduct

Quasiconformal geometry and removable sets for conformal mappings

2020

We study metric spaces defined via a conformal weight, or more generally a measurable Finsler structure, on a domain $\Omega \subset \mathbb{R}^2$ that vanishes on a compact set $E \subset \Omega$ and satisfies mild assumptions. Our main question is to determine when such a space is quasiconformally equivalent to a planar domain. We give a characterization in terms of the notion of planar sets that are removable for conformal mappings. We also study the question of when a quasiconformal mapping can be factored as a 1-quasiconformal mapping precomposed with a bi-Lipschitz map.

funktioteoriaMathematics - Metric GeometryGeneral MathematicsFOS: MathematicsMetric Geometry (math.MG)geometriametriset avaruudetPrimary 30L10. Secondary 30C35 52A38 53B40Analysis
researchProduct