Search results for "35J92"

showing 10 items of 24 documents

Asymptotic Lipschitz regularity for tug-of-war games with varying probabilities

2018

We prove an asymptotic Lipschitz estimate for value functions of tug-of-war games with varying probabilities defined in $\Omega\subset \mathbb R^n$. The method of the proof is based on a game-theoretic idea to estimate the value of a related game defined in $\Omega\times \Omega$ via couplings.

osittaisdifferentiaaliyhtälötPure mathematicsComputer Science::Computer Science and Game TheoryTug of war010102 general mathematicslocal Lipschitz estimatesLipschitz continuity01 natural sciencesnormalized p(x)-laplaciandynamic programming principle010104 statistics & probabilityMathematics - Analysis of PDEsFOS: Mathematicspeliteoria91A05 91A15 91A50 35B65 35J60 35J92stochastic games0101 mathematicsValue (mathematics)AnalysisAnalysis of PDEs (math.AP)Mathematicsstokastiset prosessit
researchProduct

The p-Laplacian with respect to measures

2013

We introduce a definition for the $p$-Laplace operator on positive and finite Borel measures that satisfy an Adams-type embedding condition.

Discrete mathematicsPure mathematicsApplied Mathematicsta111Mathematics::Algebraic Topology35J92 35P30 35D99 35B65Mathematics - Analysis of PDEsAnalysis on fractalsp-LaplacianFOS: MathematicsEmbeddingLaplace operatorAnalysisMathematicsAnalysis of PDEs (math.AP)Journal of mathematical analysis and applications
researchProduct

Equivalence of viscosity and weak solutions for the $p(x)$-Laplacian

2010

We consider different notions of solutions to the $p(x)$-Laplace equation $-\div(\abs{Du(x)}^{p(x)-2}Du(x))=0$ with $ 1<p(x)<\infty$. We show by proving a comparison principle that viscosity supersolutions and $p(x)$-superharmonic functions of nonlinear potential theory coincide. This implies that weak and viscosity solutions are the same class of functions, and that viscosity solutions to Dirichlet problems are unique. As an application, we prove a Rad\'o type removability theorem.

Pure mathematicsPrimary 35J92 Secondary 35D40 31C45 35B60Applied MathematicsMathematics::Analysis of PDEsDirichlet distributionPotential theoryNonlinear systemsymbols.namesakeMathematics - Analysis of PDEsFOS: MathematicssymbolsLaplace operatorEquivalence (measure theory)Mathematical PhysicsAnalysisAnalysis of PDEs (math.AP)MathematicsAnnales de l'Institut Henri Poincaré C, Analyse non linéaire
researchProduct

A remark on infinite initial values for quasilinear parabolic equations

2020

Abstract We study the possibility of prescribing infinite initial values for solutions of the Evolutionary p -Laplace Equation in the fast diffusion case p > 2 . This expository note has been extracted from our previous work. When infinite values are prescribed on the whole initial surface, such solutions can exist only if the domain is a space–time cylinder.

Laplace's equationSurface (mathematics)Work (thermodynamics)Applied Mathematics010102 general mathematicsMathematical analysis01 natural sciencesParabolic partial differential equationDomain (mathematical analysis)35J92 35J62010101 applied mathematicsMathematics - Analysis of PDEsFOS: MathematicsCylinder0101 mathematicsDiffusion (business)AnalysisMathematicsAnalysis of PDEs (math.AP)
researchProduct

Enclosure method for the p-Laplace equation

2014

We study the enclosure method for the p-Calder\'on problem, which is a nonlinear generalization of the inverse conductivity problem due to Calder\'on that involves the p-Laplace equation. The method allows one to reconstruct the convex hull of an inclusion in the nonlinear model by using exponentially growing solutions introduced by Wolff. We justify this method for the penetrable obstacle case, where the inclusion is modelled as a jump in the conductivity. The result is based on a monotonicity inequality and the properties of the Wolff solutions.

Convex hullGeneralization35R30 (Primary) 35J92 (Secondary)EnclosureMathematics::Classical Analysis and ODEsInverseMonotonic function01 natural sciencesTheoretical Computer ScienceMathematics - Analysis of PDEsFOS: Mathematics0101 mathematicsMathematical PhysicsMathematicsLaplace's equationMathematics::Functional AnalysisCalderón problemApplied Mathematics010102 general mathematicsMathematical analysisComputer Science Applications010101 applied mathematicsNonlinear systemSignal ProcessingJumpp-Laplace equationenclosure methodAnalysis of PDEs (math.AP)
researchProduct

Some recent results on a singular p-laplacian equations

2022

Abstract A short account of some recent existence, multiplicity, and uniqueness results for singular p-Laplacian problems either in bounded domains or in the whole space is performed, with a special attention to the case of convective reactions. An extensive bibliography is also provided.

singular termMathematics - Analysis of PDEsSettore MAT/05 - Analisi Matematicaquasi-linear elliptic equation gradient dependence singular term entire solution strong solution35-02 35J62 35J75 35J92General Mathematicsgradient dependencestrong solutionFOS: Mathematicsentire solutionquasi-linear elliptic equationAnalysis of PDEs (math.AP)
researchProduct

Remarks on regularity for p-Laplacian type equations in non-divergence form

2018

We study a singular or degenerate equation in non-divergence form modeled by the $p$-Laplacian, $$-|Du|^\gamma\left(\Delta u+(p-2)\Delta_\infty^N u\right)=f\ \ \ \ \text{in}\ \ \ \Omega.$$ We investigate local $C^{1,\alpha}$ regularity of viscosity solutions in the full range $\gamma>-1$ and $p>1$, and provide local $W^{2,2}$ estimates in the restricted cases where $p$ is close to 2 and $\gamma$ is close to 0.

viscosity solutionsintegrability of second derivativesType (model theory)01 natural sciencesDivergencelocal C1ViscosityMathematics - Analysis of PDEsFOS: Mathematicspartial differential equations0101 mathematicsMathematicsMathematical physicsosittaisdifferentiaaliyhtälötα regularityApplied Mathematics010102 general mathematicsta111p-Laplacianlocal C1α regularityviskositeettiDegenerate equation35J60 35B65 35J92010101 applied mathematicsviscosityp-LaplacianAnalysisAnalysis of PDEs (math.AP)Journal of Differential Equations
researchProduct

Elliptic equations involving the $1$-Laplacian and a subcritical source term

2017

In this paper we deal with a Dirichlet problem for an elliptic equation involving the $1$-Laplacian operator and a source term. We prove that, when the growth of the source is subcritical, there exist two bounded nontrivial solutions to our problem. Moreover, a Pohozaev type identity is proved, which holds even when the growth is supercritical. We also show explicit examples of our results.

Dirichlet problemApplied Mathematics010102 general mathematicsMathematics::Analysis of PDEsType (model theory)01 natural sciencesTerm (time)010101 applied mathematicsElliptic curveIdentity (mathematics)Operator (computer programming)Mathematics - Analysis of PDEsBounded functionFOS: MathematicsApplied mathematics0101 mathematicsLaplace operator35J75 35J20 35J92AnalysisAnalysis of PDEs (math.AP)Mathematics
researchProduct

Constant sign and nodal solutions for parametric anisotropic $(p, 2)$-equations

2021

We consider an anisotropic ▫$(p, 2)$▫-equation, with a parametric and superlinear reaction term.Weshow that for all small values of the parameter the problem has at least five nontrivial smooth solutions, four with constant sign and the fifth nodal (sign-changing). The proofs use tools from critical point theory, truncation and comparison techniques, and critical groups. Spletna objava: 9. 9. 2021. Abstract. Bibliografija: str. 1076.

udc:517.9electrorheological fluidsElectrorheological fluidMaximum principleMathematics - Analysis of PDEsSettore MAT/05 - Analisi MatematicaFOS: Mathematicsconstant sign and nodal solutionsAnisotropyanisotropic operators regularity theory maximum principle constant sign and nodal solutions critical groups variable exponent electrorheological fluidsParametric statisticsMathematicsvariable exponentVariable exponentApplied MathematicsMathematical analysisudc:517.956.2regularity theoryAnisotropic operatorsanisotropic operatorsTerm (time)Primary: 35J20 35J60 35J92 Secondary: 47J15 58E05maximum principleConstant (mathematics)critical groupsAnalysisAnalysis of PDEs (math.AP)Sign (mathematics)
researchProduct

Uniform measure density condition and game regularity for tug-of-war games

2018

We show that a uniform measure density condition implies game regularity for all 2 < p < ∞ in a stochastic game called “tug-of-war with noise”. The proof utilizes suitable choices of strategies combined with estimates for the associated stopping times and density estimates for the sum of independent and identically distributed random vectors. peerReviewed

Statistics and ProbabilityIndependent and identically distributed random variablesComputer Science::Computer Science and Game Theorygame regularitydensity estimate for the sum of i.i.d. random vectorsTug of war01 natural sciencesMeasure (mathematics)$p$-regularityMathematics - Analysis of PDEsFOS: MathematicsApplied mathematicspeliteoriastochastic games0101 mathematics91A15 60G50 35J92Mathematicsp-harmonic functionsstokastiset prosessit$p$-harmonic functionsosittaisdifferentiaaliyhtälöthitting probability010102 general mathematicsStochastic gametug-of-war gamesProbability (math.PR)uniform measure density condition010101 applied mathematicsNoiseuniform distribution in a ballMathematics - ProbabilityAnalysis of PDEs (math.AP)
researchProduct