Search results for "35Q55"

showing 6 items of 6 documents

Families of deformations of the thirteen peregrine breather solutions to the NLS equation depending on twenty four parameters

2017

International audience; We go on with the study of the solutions to the focusing one dimensional nonlinear Schrodinger equation (NLS). We construct here the thirteen's Peregrine breather (P13 breather) with its twenty four real parameters, creating deformation solutions to the NLS equation. New families of quasirational solutions to the NLS equation in terms of explicit ratios of polynomials of degree 182 in x and t multiplied by an exponential depending on t are obtained. We present characteristic patterns of the modulus of these solutions in the (x; t) plane, in function of the different parameters.

NLS equationNonlinear Sciences::Exactly Solvable and Integrable SystemsPeregrine breather[MATH.MATH-MP]Mathematics [math]/Mathematical Physics [math-ph]MSC: 35Q55 37K10Rogue waves[ MATH.MATH-MP ] Mathematics [math]/Mathematical Physics [math-ph][MATH.MATH-MP] Mathematics [math]/Mathematical Physics [math-ph]Nonlinear Sciences::Pattern Formation and Solitons
researchProduct

Families of solutions of order nine to the NLS equation with sixteen parameters

2015

We construct new deformations of the Peregrine breather (P9) of order 9 with 16 real parameters. With this method, we obtain explicitly new families of quasi-rational solutions to the NLS equation in terms of a product of an exponential depending on t by a ratio of two polynomials of degree 90 in x and t; when all the parameters are equal to 0, we recover the classical P9 breather. We construct new patterns of different types of rogue waves as triangular configurations of 45 peaks as well as rings and concentric rings.

NLS equationPeregrine breather[MATH.MATH-MP]Mathematics [math]/Mathematical Physics [math-ph][ MATH.MATH-MP ] Mathematics [math]/Mathematical Physics [math-ph]35Q55 37K10.[MATH.MATH-MP] Mathematics [math]/Mathematical Physics [math-ph]Nonlinear Sciences::Pattern Formation and Solitonsrogue waves 1
researchProduct

On a nonlinear Schrödinger equation for nucleons in one space dimension

2021

We study a 1D nonlinear Schrödinger equation appearing in the description of a particle inside an atomic nucleus. For various nonlinearities, the ground states are discussed and given in explicit form. Their stability is studied numerically via the time evolution of perturbed ground states. In the time evolution of general localized initial data, they are shown to appear in the long time behaviour of certain cases.

numerical studySpace dimensionNonlinear Schrö010103 numerical & computational mathematicsNonlinear Schrödinger equations01 natural sciencesStability (probability)symbols.namesakeMathematics - Analysis of PDEs[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP]Mathematics - Numerical Analysis0101 mathematics[MATH]Mathematics [math]dinger equationsNonlinear Schrödinger equationMathematicsMSC 35Q55 35C08 65M70Numerical AnalysisApplied Mathematics010102 general mathematicsTime evolutionground statesComputational MathematicsClassical mechanicsModeling and SimulationAtomic nucleussymbolsParticleNucleonAnalysis[MATH.MATH-NA]Mathematics [math]/Numerical Analysis [math.NA]
researchProduct

On critical behaviour in systems of Hamiltonian partial differential equations

2013

Abstract We study the critical behaviour of solutions to weakly dispersive Hamiltonian systems considered as perturbations of elliptic and hyperbolic systems of hydrodynamic type with two components. We argue that near the critical point of gradient catastrophe of the dispersionless system, the solutions to a suitable initial value problem for the perturbed equations are approximately described by particular solutions to the Painlevé-I (P $$_I$$ I ) equation or its fourth-order analogue P $$_I^2$$ I 2 . As concrete examples, we discuss nonlinear Schrödinger equations in the semiclassical limit. A numerical study of these cases provides strong evidence in support of the conjecture.

Hamiltonian PDEsFOS: Physical sciencesSemiclassical physicsPainlevé equationsArticleSchrödinger equationHamiltonian systemsymbols.namesakeMathematics - Analysis of PDEs37K05Modelling and SimulationGradient catastrophe and elliptic umbilic catastrophe34M55FOS: MathematicsInitial value problemSettore MAT/07 - Fisica MatematicaEngineering(all)Mathematical PhysicsMathematicsG100Partial differential equationConjectureNonlinear Sciences - Exactly Solvable and Integrable SystemsHyperbolic and Elliptic systemsApplied MathematicsMathematical analysisQuasi-integrable systemsGeneral EngineeringMathematical Physics (math-ph)35Q55Nonlinear systemModeling and SimulationsymbolsExactly Solvable and Integrable Systems (nlin.SI)Hamiltonian (quantum mechanics)Gradient catastrophe and elliptic umbilic catastrophe; Hamiltonian PDEs; Hyperbolic and Elliptic systems; Painlevé equations; Quasi-integrable systemsAnalysis of PDEs (math.AP)
researchProduct

On the numerical evaluation of algebro-geometric solutions to integrable equations

2011

Physically meaningful periodic solutions to certain integrable partial differential equations are given in terms of multi-dimensional theta functions associated to real Riemann surfaces. Typical analytical problems in the numerical evaluation of these solutions are studied. In the case of hyperelliptic surfaces efficient algorithms exist even for almost degenerate surfaces. This allows the numerical study of solitonic limits. For general real Riemann surfaces, the choice of a homology basis adapted to the anti-holomorphic involution is important for a convenient formulation of the solutions and smoothness conditions. Since existing algorithms for algebraic curves produce a homology basis no…

Pure mathematicsExplicit formulaeGeneral Physics and AstronomyFOS: Physical sciencesTheta functionHomology (mathematics)37K10 14Q05 35Q5501 natural sciencessymbols.namesakeMathematics - Algebraic Geometry[MATH.MATH-MP]Mathematics [math]/Mathematical Physics [math-ph]0103 physical sciencesFOS: Mathematics0101 mathematics[MATH.MATH-MP] Mathematics [math]/Mathematical Physics [math-ph]010306 general physicsAlgebraic Geometry (math.AG)Mathematical PhysicsMathematicsPartial differential equationNonlinear Sciences - Exactly Solvable and Integrable SystemsApplied MathematicsRiemann surface010102 general mathematics[ MATH.MATH-MP ] Mathematics [math]/Mathematical Physics [math-ph]Statistical and Nonlinear PhysicsMathematical Physics (math-ph)Nonlinear systemsymbolsAlgebraic curveExactly Solvable and Integrable Systems (nlin.SI)Symplectic geometry
researchProduct

The fifth order Peregrine breather and its eight-parameters deformations solutions of the NLS equation.

2013

We construct here explicitly new deformations of the Peregrine breather of order 5 with 8 real parameters. This gives new families of quasi-rational solutions of the NLS equation and thus one can describe in a more precise way the phenomena of appearance of multi rogue waves. With this method, we construct new patterns of different types of rogue waves. We get at the same time, the triangular configurations as well as rings isolated. Moreover, one sees appearing for certain values of the parameters, new configurations of concentric rings.

PhysicsNLS equationPhysics and Astronomy (miscellaneous)BreatherPeregrine breathers[ MATH.MATH-MP ] Mathematics [math]/Mathematical Physics [math-ph]Order (ring theory)01 natural sciencesConcentric ring010305 fluids & plasmasAkhmediev's solutions.35Q55; 37K10Classical mechanics[MATH.MATH-MP]Mathematics [math]/Mathematical Physics [math-ph]Wronskians0103 physical sciencesPeregrine solitonAkhmediev's solutionsRogue wave[MATH.MATH-MP] Mathematics [math]/Mathematical Physics [math-ph]010306 general physicsNonlinear Sciences::Pattern Formation and Solitons
researchProduct