Search results for "4-ethylenedioxythiophene"

showing 10 items of 11 documents

The role of lithium, perchlorate and water during electrochemical processes in poly(3,4-ethylenedioxythiophene) films in LiClO4 aqueous solutions

2021

Abstract Thin films of poly(3,4-ethylendioxythiophene) (PEDOT) were electrochemically deposited on gold electrodes in aqueous media. The role of perchlorate, lithium, and water during the charge/discharge of PEDOT films was investigated by cyclic voltammetry together with EQCM, vis − NIR spectroscopy, and acoustic impedance, also by means of ac-electrogravimetry in a 0.1 M LiCl O 4 aqueous solutions. In this way, it has been possible to correlate the electrical, mass, color and electromechanical properties changes during the electrochemical reactions of this polymer. Both, hydrated lithium cations and perchlorate anions can act as counterions during the electrochemical reactions, however, a…

Aqueous solutionChemistryGeneral Chemical EngineeringInorganic chemistrychemistry.chemical_elementElectrochemistryLithium perchlorateAnalytical ChemistryPerchloratechemistry.chemical_compoundPEDOT:PSSElectrochemistryLithiumsense organsCyclic voltammetryPoly(34-ethylenedioxythiophene)Journal of Electroanalytical Chemistry
researchProduct

Development and Characterization of Novel Conductive Nanofiller Based on Multi-Walled Carbon Nanotubes Grafted with Poly(3,4-Ethylenedioxythiophene)

2018

In the present study, an approach for the graft polymerization of multi-walled carbon nanotubes (MWCNTs) with 3,4-ethylenedioxythiophene (EDOT) has been evaluated. The surface of the MWCNTs was activated with thiophene groups through the amide linker followed by oxidative polymerization of EDOT monomer resulted in the development of PEDOT-g-MWCNTs. The methods of thermal gravimetric analysis (TGA), X-ray fluorescence, and Raman spectroscopy were used for characterization of functionalization efficiency. The TGA data indicated of 21% functionalization attached to MWCNTs. X-ray fluorescence confirmed the presence of Cl, and S atoms in functionalized fillers. The study of Raman spectra confirm…

Materials scienceMechanical EngineeringNanotechnology02 engineering and technologyCarbon nanotube010402 general chemistry021001 nanoscience & nanotechnology01 natural sciences0104 chemical sciencesCharacterization (materials science)law.inventionchemistry.chemical_compoundchemistryMechanics of MaterialslawGeneral Materials Science0210 nano-technologyElectrical conductorPoly(34-ethylenedioxythiophene)Key Engineering Materials
researchProduct

Light induced electropolymerization of poly(3,4-ethylenedioxythiophene) on niobium oxide

2010

Abstract The photoelectrochemical polymerization of poly(3,4-ethylenedioxythiophene), PEDOT, was successfully realized on anodic film grown to 50 V on magnetron sputtered niobium. Photocurrent Spectroscopy was employed to study the optical properties of Nb/Nb 2 O 5 /PEDOT/electrolyte interface in a large range of potential, and to get an estimate of the band gap and flat band potential of both the oxide and the polymer. Scanning Electron Microscopy was used to study the morphology of PEDOT. Both the optical and morphological features of the photoelectrochemically grown polymer were compared with those showed by PEDOT electropolymerized on gold conducting substrate.

Conductive polymerPhotocurrentMaterials scienceBand gapGeneral Chemical EngineeringPhotoelectrochemistryInorganic chemistryOxidephoto-electropolymerization poly(34-ethylenedioxythiophene) niobium oxidechemistry.chemical_compoundSettore ING-IND/23 - Chimica Fisica ApplicatachemistryPEDOT:PSSChemical engineeringBand gap Niobium oxide PEDOT PhotoelectrochemistryElectrochemistryNiobium oxidePoly(34-ethylenedioxythiophene)Electrochimica Acta
researchProduct

Optimization of Polymer Blue-Light-Emitting Devices by Introducing a Hole-Injection Layer Doped with the Molecular Nanomagnet [Mn12O12(H2O)4(C6F5COO)…

2006

chemistry.chemical_classificationMaterials scienceMolecular magnetsbusiness.industryMechanical EngineeringDopingHole injection layerPolymerNanomagnetElectron transport chainchemistry.chemical_compoundchemistryMechanics of MaterialsOptoelectronicsGeneral Materials SciencebusinessPoly(34-ethylenedioxythiophene)Blue lightAdvanced Materials
researchProduct

Cutaneous Recording and Stimulation of Muscles Using Organic Electronic Textiles

2016

International audience; Electronic textiles are an emerging field providing novel and non-intrusive solutions for healthcare. Conducting polymer-coated textiles enable a new generation of fully organic surface electrodes for electrophysiological evaluations. Textile electrodes are able to assess high quality muscular monitoring and to perform transcutaneous electrical stimulation.

AdultMalegradientsMaterials scienceBiomedical EngineeringPharmaceutical ScienceElectric Stimulation Therapy02 engineering and technology010402 general chemistry01 natural sciencesstimulationBiomaterialselectrochemical transistorexcitabilityHumansPEDOT:PSSneural interfacesMuscle activityMuscle SkeletalTextile electrodesElectrodespolymersmuscle activityElectromyographyTextiles[SCCO.NEUR]Cognitive science/Neurosciencepoly(3Transcutaneous Electrical Stimulationsmart textilereflex021001 nanoscience & nanotechnologyelectrophysiology0104 chemical sciencesmicroelectrode arrays[ SCCO.NEUR ] Cognitive science/Neurosciencenanoparticles4-ethylenedioxythiophene)0210 nano-technologyBiomedical engineering
researchProduct

Fabrication of an extremely cheap poly(3,4-ethylenedioxythiophene) modified pencil lead electrode for effective hydroquinone sensing

2021

Hydroquinone (HQ) is one of the major deleterious metabolites of benzene in the human body, which has been implicated to cause various human diseases. In order to fabricate a feasible sensor for the accurate detection of HQ, we attempted to electrochemically modify a piece of common 2B pencil lead (PL) with the conductive poly(3,4-ethylenedioxythiophene) or PEDOT film to construct a PEDOT/PL electrode. We then examined the performance of PEDOT/PL in the detection of hydroquinone with different voltammetry methods. Our results have demonstrated that PEDOT film was able to dramatically enhance the electrochemical response of pencil lead electrode to hydroquinone and exhibited a good linear co…

Materials sciencePolymers and Plastics02 engineering and technology010402 general chemistrybiosensor01 natural sciencesArticlepencil leadlcsh:QD241-441chemistry.chemical_compoundPEDOT:PSSlcsh:Organic chemistrypoly(34-ethylenedioxythiophene)VoltammetryHorizontal scan rateHydroquinonegraphiteGeneral Chemistry021001 nanoscience & nanotechnology0104 chemical scienceshydroquinonechemistryChemical engineeringElectrodeLinear sweep voltammetryCyclic voltammetry0210 nano-technologyPoly(34-ethylenedioxythiophene)
researchProduct

Poly(3,4-Ethylenedioxythiophene) nanoparticles as building blocks for hybrid thermoelectric flexible films

2019

Hybrid thermoelectric flexible films based on poly(3,4-ethylenedioxythiophene) (PEDOT) nanoparticles and carbon nanotubes were prepared by using layer-by-layer (LbL) assembly. The employed PEDOT nanoparticles were synthesized by oxidative miniemulsion polymerization by using iron(III) p-toluenesulfonate hexahydrate (FeTos) as an oxidant and poly(diallyldimethylammonium chloride) (PDADMAC) as stabilizer. Sodium deoxycholate (DOC) was used as a stabilizer to prepare the aqueous dispersions of the carbon nanotubes. Hybrid thermoelectric films were finally prepared with different monomer/oxidant molar ratios and different types of carbon nanotubes, aiming to maximize the power factor (PF). The …

Materials scienceSolucions polimèriquesminiemulsionNanoparticle02 engineering and technologyCarbon nanotubepedot010402 general chemistry01 natural sciencesthermoelectricitylaw.inventionchemistry.chemical_compoundVan der Pauw methodPEDOT:PSSlawSeebeck coefficientThermoelectric effectMaterials ChemistryPEDOTcarbon nanotubeselectrical conductivityhybrid materialSurfaces and InterfacesConductivitat elèctricaCiència dels materials021001 nanoscience & nanotechnology0104 chemical sciencesSurfaces Coatings and FilmschemistryChemical engineeringlcsh:TA1-2040nanoparticleslcsh:Engineering (General). Civil engineering (General)0210 nano-technologyHybrid materiallayer-by-layer assemblyPoly(34-ethylenedioxythiophene)
researchProduct

Fabrication of a biocompatible and continuous glucose biosensor with the poly(3,4-ethylenedioxythiophene) modified electrode

2019

Abstract In this study, we have explored the potentiality of using GOx/AuNP/PEDOT(BSA)/Pt electrode as an implantable, long-lasting, and sensitive glucose biosensor. We have examined the performance of the electrode for glucose calibration with three electrochemical measurements, such as cyclic voltammetry, linear sweep voltammetry, as well as chronoamperometry, which all exhibited strong linear correlation between resulting signal and glucose concentration. In comparison, linear sweep voltammetry gave the best linear sensitivity, whose average was about 3.124 µA/mM/cm2 within a wide glucose concentration range from 0.416 to 50 mM. Meanwhile, the stability of the electrode was confirmed by …

Materials scienceGeneral Chemical EngineeringGlucose Measurement02 engineering and technologyGeneral ChemistryChronoamperometry010402 general chemistry021001 nanoscience & nanotechnology01 natural sciences0104 chemical scienceschemistry.chemical_compoundchemistryPEDOT:PSSLinear sweep voltammetryElectrodeCyclic voltammetry0210 nano-technologyBiosensorPoly(34-ethylenedioxythiophene)Nuclear chemistryJournal of the Taiwan Institute of Chemical Engineers
researchProduct

Electrochemical Fabrication and Physicochemical Characterization of Metal/High-k Insulating Oxide/Polymer/Electrolyte Junctions

2014

Photoelectrochemical polymerization of poly(3,4-ethylenedioxythiophene), PEDOT, was successfully realized on anodic film grown to 50 V on magnetron sputtered Ti-6 atom % Si alloys. Scanning electron microscopy allowed us to evidence formation of compact and uniform polymer layers on the oxide surface. Photoelectrochemical and impedance measurements showed that photopolymerization allows one to grow PEDOT in its conducting state, while a strong cathodic polarization is necessary to bring the polymer in its p-type semiconducting state. Information on the optical and electrical properties of metal/oxide/polymer/electrolyte junctions proves that PEDOT has promising performance as an electrolyte…

Materials scienceFabricationElectrochemical fabricationInorganic chemistryImpedance measurementOxidePhysico-chemical characterizationPoly-3 4-ethylenedioxythiopheneElectrolyteElectrochemistrySettore ING-INF/01 - ElettronicaPhotoelectrochemistrychemistry.chemical_compoundPEDOT:PSSPhysical and Theoretical ChemistryConducting statechemistry.chemical_classificationPhotopolymerizationCathodic polarizationPolymerSilicon alloySurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsOptical and electrical propertieSettore ING-IND/23 - Chimica Fisica ApplicataGeneral EnergychemistryPolymerizationCavity magnetronLithium IntercalationTitanium alloyScanning electron microscopyThe Journal of Physical Chemistry C
researchProduct

Electrochemically induced free solvent transfer in thin poly(3,4-ethylenedioxythiophene) films

2015

International audience; In dynamic intrinsically conducting films, counterions transfer and conformational movements stimulated by the electrochemical reactions affect the free water molecules transfer. Poly(3,4-ethylenedioxythiophene) or PEDOT is included in this category. Here, p-doping of PEDOT immersed in LiClO4 aqueous solution was explored by ac-electrogravimetry. Electrochemical impedance spectroscopy combined with mass impedance spectroscopy proves useful for species identification and kinetics. For PEDOT, new equations have been developed to analyze the ac -electrogravimetry response. Quantitatively, faster free water transfer and slower coupled View the MathML sourceClO4−/free wat…

Materials scienceGeneral Chemical EngineeringAnalytical chemistry02 engineering and technology010402 general chemistryElectrochemistry01 natural scienceschemistry.chemical_compoundPEDOT:PSSac-ElectrogravimetryElectrochemistryMoleculeElectrochemical quartz crystal microbalance[CHIM]Chemical SciencesElectrochemically induced conformational changeschemistry.chemical_classificationAqueous solutionPolymerPoly(3021001 nanoscience & nanotechnology0104 chemical sciencesDielectric spectroscopychemistryChemical engineeringCounterion4-ethylenedioxythiophene)0210 nano-technology[CHIM.OTHE]Chemical Sciences/OtherElectrochemical impedance spectroscopyPoly(34-ethylenedioxythiophene)
researchProduct