Search results for "46B20"

showing 10 items of 16 documents

Strongly extreme points and approximation properties

2017

We show that if $x$ is a strongly extreme point of a bounded closed convex subset of a Banach space and the identity has a geometrically and topologically good enough local approximation at $x$, then $x$ is already a denting point. It turns out that such an approximation of the identity exists at any strongly extreme point of the unit ball of a Banach space with the unconditional compact approximation property. We also prove that every Banach space with a Schauder basis can be equivalently renormed to satisfy the sufficient conditions mentioned. In contrast to the above results we also construct a non-symmetric norm on $c_0$ for which all points on the unit sphere are strongly extreme, but …

Unit spherePure mathematicsMathematics::Functional AnalysisApproximation propertyGeneral MathematicsBanach spaceRegular polygonSchauder basisFunctional Analysis (math.FA)Mathematics - Functional Analysis46B20Bounded functionFOS: MathematicsPoint (geometry)Extreme pointMathematics
researchProduct

Diameter 2 properties and convexity

2015

We present an equivalent midpoint locally uniformly rotund (MLUR) renorming $X$ of $C[0,1]$ on which every weakly compact projection $P$ satisfies the equation $\|I-P\| = 1+\|P\|$ ($I$ is the identity operator on $X$). As a consequence we obtain an MLUR space $X$ with the properties D2P, that every non-empty relatively weakly open subset of its unit ball $B_X$ has diameter 2, and the LD2P+, that for every slice of $B_X$ and every norm 1 element $x$ inside the slice there is another element $y$ inside the slice of distance as close to 2 from $x$ as desired. An example of an MLUR space with the D2P, the LD2P+, and with convex combinations of slices of arbitrary small diameter is also given.

Unit sphereSmall diameter46B04 46B20General Mathematics010102 general mathematicsRegular polygon01 natural sciencesMidpointConvexityFunctional Analysis (math.FA)Mathematics - Functional Analysis010101 applied mathematicsCombinatoricsNorm (mathematics)FOS: Mathematics0101 mathematicsMathematicsStudia Mathematica
researchProduct

Banach spaces where convex combinations of relatively weakly open subsets of the unit ball are relatively weakly open

2018

We introduce and study Banach spaces which have property CWO, i.e., every finite convex combination of relatively weakly open subsets of their unit ball is open in the relative weak topology of the unit ball. Stability results of such spaces are established, and we introduce and discuss a geometric condition---property (co)---on a Banach space. Property (co) essentially says that the operation of taking convex combinations of elements of the unit ball is, in a sense, an open map. We show that if a finite dimensional Banach space $X$ has property (co), then for any scattered locally compact Hausdorff space $K$, the space $C_0(K,X)$ of continuous $X$-valued functions vanishing at infinity has…

Unit sphereMathematics::Functional AnalysisPure mathematicsWeak topology46B04 46B20General Mathematics010102 general mathematicsBanach spaceHausdorff spaceSpace (mathematics)01 natural sciencesOpen and closed mapsFunctional Analysis (math.FA)Mathematics - Functional AnalysisComplex spaceFOS: MathematicsLocally compact space0101 mathematicsVDP::Mathematics and natural science: 400MathematicsStudia Mathematica
researchProduct

Daugavet- and delta-points in Banach spaces with unconditional bases

2020

We study the existence of Daugavet- and delta-points in the unit sphere of Banach spaces with a 1 1 -unconditional basis. A norm one element x x in a Banach space is a Daugavet-point (resp. delta-point) if every element in the unit ball (resp. x x itself) is in the closed convex hull of unit ball elements that are almost at distance 2 2 from x x . A Banach space has the Daugavet property (resp. diametral local diameter two property) if and only if every norm one element is a Daugavet-point (resp. delta-point). It is well-known that a Banach space with the Daugavet property does not have an unconditional basis. Similarly spaces with the diametral local diameter two property do not have an un…

Convex hullUnit spherePure mathematicsMathematics::Functional AnalysisProperty (philosophy)Basis (linear algebra)010102 general mathematics05 social sciencesMathematicsofComputing_GENERALBanach spaceGeneral MedicineVDP::Matematikk og Naturvitenskap: 400::Matematikk: 41001 natural sciences46B20 (Primary) 46B22 46B04 (Secondary)Functional Analysis (math.FA)Mathematics - Functional AnalysisNorm (mathematics)0502 economics and businessFOS: Mathematics050207 economics0101 mathematicsElement (category theory)Constant (mathematics)Mathematics
researchProduct

Haar Type and Carleson Constants

2009

For a collection ℰ of dyadic intervals, a Banach space X, and p∈(1, 2], we assume the upper l p estimates where x I ∈X, and h I denotes the L ∞ normalized Haar function supported on I. We determine the minimal requirement on the size of ℰ such that these estimates imply that X is of Haar type p. The characterization is given in terms of the Carleson constant of ℰ.

Discrete mathematicsPure mathematicsMathematics::Functional AnalysisGeneral MathematicsBanach spaceMathematics::Classical Analysis and ODEsHaarFunction (mathematics)Characterization (mathematics)Type (model theory)Functional Analysis (math.FA)Mathematics - Functional Analysis46B20FOS: Mathematics46B07Constant (mathematics)46B07 ; 46B20Mathematics
researchProduct

New applications of extremely regular function spaces

2017

Let $L$ be an infinite locally compact Hausdorff topological space. We show that extremely regular subspaces of $C_0(L)$ have very strong diameter $2$ properties and, for every real number $\varepsilon$ with $0<\varepsilon<1$, contain an $\varepsilon$-isometric copy of $c_0$. If $L$ does not contain isolated points they even have the Daugavet property, and thus contain an asymptotically isometric copy of $\ell_1$.

Mathematics::Functional AnalysisProperty (philosophy)Function spaceMathematics::Operator AlgebrasGeneral MathematicsHausdorff spaceTopological spaceLinear subspaceFunctional Analysis (math.FA)CombinatoricsMathematics - Functional AnalysisFOS: Mathematics46B20 46B22Locally compact spaceMathematicsReal number
researchProduct

Vector-valued analytic functions of bounded mean oscillation and geometry of Banach spaces

1997

When dealing with vector-valued functions, sometimes is rather difficult to give non trivial examples, meaning examples which do not come from tensoring scalar-valued functions and vectors in the Banach space, belonging to certain classes. This is the situation for vector valued BMO. One of the objectives of this paper is to look for methods to produce such examples. Our main tool will be the vector-valued extension of the following result on multipliers, proved in [MP], which says that the space of multipliers between H and BMOA can be identified with the space of Bloch functions B, i.e. (H, BMOA) = B (see Section 3 for notation), which, in particular gives that g ∗ f ∈ BMOA whenever f ∈ H…

Discrete mathematicsGeneral MathematicsInfinite-dimensional vector functionBanach space46J15Banach manifoldHardy space30G30Bounded mean oscillationBounded operatorsymbols.namesake46B2046E40symbolsInterpolation space46B28Lp spaceMathematics
researchProduct

On singular integral and martingale transforms

2007

Linear equivalences of norms of vector-valued singular integral operators and vector-valued martingale transforms are studied. In particular, it is shown that the UMD(p)-constant of a Banach space X equals the norm of the real (or the imaginary) part of the Beurling-Ahlfors singular integral operator, acting on the X-valued L^p-space on the plane. Moreover, replacing equality by a linear equivalence, this is found to be the typical property of even multipliers. A corresponding result for odd multipliers and the Hilbert transform is given.

46B09General Mathematics46B20 (Secondary)Banach space42B15 (Primary) 42B2001 natural sciencesUpper and lower bounds010104 statistics & probabilitysymbols.namesakeCorollary60G46; 42B15 (Primary) 42B20; 46B09; 46B20 (Secondary)Classical Analysis and ODEs (math.CA)FOS: Mathematics60G460101 mathematicsMathematicsNormed vector spaceDiscrete mathematicsApplied MathematicsProbability (math.PR)010102 general mathematicsSingular integralSingular valueMathematics - Classical Analysis and ODEssymbolsHilbert transformMartingale (probability theory)Mathematics - ProbabilityTransactions of the American Mathematical Society
researchProduct

Polyhedrality and decomposition

2018

Abstract The aim of this note is to present two results that make the task of finding equivalent polyhedral norms on certain Banach spaces, having either a Schauder basis or an uncountable unconditional basis, easier and more transparent. The hypotheses of both results are based on decomposing the unit sphere of a Banach space into countably many pieces, such that each one satisfies certain properties. Some examples of spaces having equivalent polyhedral norms are given.

Unit spherePure mathematicsMathematics::Functional AnalysisBasis (linear algebra)General Mathematics010102 general mathematicsBanach space01 natural sciencesSchauder basisTask (project management)Functional Analysis (math.FA)Mathematics - Functional Analysis0103 physical sciencesDecomposition (computer science)FOS: Mathematics46B03 46B20 46B26Uncountable set010307 mathematical physics0101 mathematicsMathematics
researchProduct

Two-dimensional Banach spaces with polynomial numerical index zero

2009

We study two-dimensional Banach spaces with polynomial numerical indices equal to zero.

/dk/atira/pure/subjectarea/asjc/2600/2608/dk/atira/pure/subjectarea/asjc/2600/2607Eberlein–Šmulian theoremBanach manifoldFinite-rank operatorPolynomialMatrix polynomialFOS: MathematicsDiscrete Mathematics and Combinatorics/dk/atira/pure/subjectarea/asjc/2600/2602C0-semigroupLp spaceMathematicsMathematics::Functional AnalysisNumerical AnalysisBanach spaceAlgebra and Number TheoryMathematical analysisFunctional Analysis (math.FA)Mathematics - Functional Analysis46B04 (Primary) 46B20 46G25 47A12 (Secondary)Polynomial numerical indexInterpolation space/dk/atira/pure/subjectarea/asjc/2600/2612Geometry and TopologyNumerical rangeMonic polynomialLinear Algebra and its Applications
researchProduct