6533b7defe1ef96bd1275f55
RESEARCH PRODUCT
Strongly extreme points and approximation properties
Stanimir TroyanskiOlav NygaardTrond A. AbrahamsenPetr Hájeksubject
Unit spherePure mathematicsMathematics::Functional AnalysisApproximation propertyGeneral MathematicsBanach spaceRegular polygonSchauder basisFunctional Analysis (math.FA)Mathematics - Functional Analysis46B20Bounded functionFOS: MathematicsPoint (geometry)Extreme pointMathematicsdescription
We show that if $x$ is a strongly extreme point of a bounded closed convex subset of a Banach space and the identity has a geometrically and topologically good enough local approximation at $x$, then $x$ is already a denting point. It turns out that such an approximation of the identity exists at any strongly extreme point of the unit ball of a Banach space with the unconditional compact approximation property. We also prove that every Banach space with a Schauder basis can be equivalently renormed to satisfy the sufficient conditions mentioned. In contrast to the above results we also construct a non-symmetric norm on $c_0$ for which all points on the unit sphere are strongly extreme, but none of these points are denting.
year | journal | country | edition | language |
---|---|---|---|---|
2017-05-07 |