Search results for "46E40"

showing 3 items of 3 documents

New spaces of matrices with operator entries

2019

In this paper, we will consider matrices with entries in the space of operators $\mathcal{B}(H)$, where $H$ is a separable Hilbert space and consider the class of matrices that can be approached in the operator norm by matrices with a finite number of diagonals. We will use the Schur product with Toeplitz matrices generated by summability kernels to describe such a class and show that in the case of Toeplitz matrices it can be identified with the space of continuous functions with values in $\mathcal B(H)$. We shall also introduce matriceal versions with operator entries of classical spaces of holomorphic functions such as $H^\infty(\mathbb{D})$ and $A(\mathbb{D})$ when dealing with upper t…

Discrete mathematicsClass (set theory)010102 general mathematics010103 numerical & computational mathematicsSpace (mathematics)01 natural sciencesToeplitz matrixFunctional Analysis (math.FA)Mathematics - Functional AnalysisMathematics (miscellaneous)Operator (computer programming)FOS: Mathematics47L10 46E40 (Primary) 47A56 15B05 46G10 (Secondary)Hadamard product0101 mathematicsVector-valued functionComputer Science::DatabasesSeparable hilbert spaceMathematicsSchur multiplier
researchProduct

Vector-valued analytic functions of bounded mean oscillation and geometry of Banach spaces

1997

When dealing with vector-valued functions, sometimes is rather difficult to give non trivial examples, meaning examples which do not come from tensoring scalar-valued functions and vectors in the Banach space, belonging to certain classes. This is the situation for vector valued BMO. One of the objectives of this paper is to look for methods to produce such examples. Our main tool will be the vector-valued extension of the following result on multipliers, proved in [MP], which says that the space of multipliers between H and BMOA can be identified with the space of Bloch functions B, i.e. (H, BMOA) = B (see Section 3 for notation), which, in particular gives that g ∗ f ∈ BMOA whenever f ∈ H…

Discrete mathematicsGeneral MathematicsInfinite-dimensional vector functionBanach space46J15Banach manifoldHardy space30G30Bounded mean oscillationBounded operatorsymbols.namesake46B2046E40symbolsInterpolation space46B28Lp spaceMathematics
researchProduct

Convolution of three functions by means of bilinear maps and applications

1999

When dealing with spaces of vector-valued analytic functions there is a natural way to understand multipliers between them. If X and Y are Banach spaces and L(X,Y ) stands for the space of linear and continuous operators we may consider the convolution of L(X,Y )-valued analytic functions, say F (z) = ∑ n=0∞ Tnz , and X-valued polynomials, say f(z) = ∑m n=0 xnz , to get the Y -valued function F ∗ f(z) = ∑ Tn(xn)z. The second author considered such a definition and studied multipliers between H(X) and BMOA(Y ) in [5]. When the functions take values in a Banach algebra A then the natural extension of multiplier is simply that if f(z) = ∑ anz n and g(z) = ∑ bnz , then f ∗ g(z) = ∑ an.bnz n whe…

Discrete mathematicsSymmetric bilinear formSesquilinear formGeneral MathematicsBanach spaceOrthogonal complementBilinear formMultiplier (Fourier analysis)46E40Tensor productInterpolation space46B2846G25MathematicsIllinois Journal of Mathematics
researchProduct