Search results for "47A20"
showing 3 items of 3 documents
Hilbert space operators with two-isometric dilations
2021
A bounded linear Hilbert space operator $S$ is said to be a $2$-isometry if the operator $S$ and its adjoint $S^*$ satisfy the relation $S^{*2}S^{2} - 2 S^{*}S + I = 0$. In this paper, we study Hilbert space operators having liftings or dilations to $2$-isometries. The adjoint of an operator which admits such liftings is characterized as the restriction of a backward shift on a Hilbert space of vector-valued analytic functions. These results are applied to concave operators (i.e., operators $S$ such that $S^{*2}S^{2} - 2 S^{*}S + I \le 0$) and to operators similar to contractions or isometries. Two types of liftings to $2$-isometries, as well as the extensions induced by them, are construct…
THE CAUCHY DUAL AND 2-ISOMETRIC LIFTINGS OF CONCAVE OPERATORS
2018
We present some 2-isometric lifting and extension results for Hilbert space concave operators. For a special class of concave operators we study their Cauchy dual operators and discuss conditions under which these operators are subnormal. In particular, the quasinormality of compressions of such operators is studied.
Maximal Operators with Respect to the Numerical Range
2018
Let $\mathfrak{n}$ be a nonempty, proper, convex subset of $\mathbb{C}$. The $\mathfrak{n}$-maximal operators are defined as the operators having numerical ranges in $\mathfrak{n}$ and are maximal with this property. Typical examples of these are the maximal symmetric (or accretive or dissipative) operators, the associated to some sesquilinear forms (for instance, to closed sectorial forms), and the generators of some strongly continuous semi-groups of bounded operators. In this paper the $\mathfrak{n}$-maximal operators are studied and some characterizations of these in terms of the resolvent set are given.