Search results for "47A20"

showing 3 items of 3 documents

Hilbert space operators with two-isometric dilations

2021

A bounded linear Hilbert space operator $S$ is said to be a $2$-isometry if the operator $S$ and its adjoint $S^*$ satisfy the relation $S^{*2}S^{2} - 2 S^{*}S + I = 0$. In this paper, we study Hilbert space operators having liftings or dilations to $2$-isometries. The adjoint of an operator which admits such liftings is characterized as the restriction of a backward shift on a Hilbert space of vector-valued analytic functions. These results are applied to concave operators (i.e., operators $S$ such that $S^{*2}S^{2} - 2 S^{*}S + I \le 0$) and to operators similar to contractions or isometries. Two types of liftings to $2$-isometries, as well as the extensions induced by them, are construct…

47[MATH.MATH-FA]Mathematics [math]/Functional Analysis [math.FA]A-contractionFunctional Analysis (math.FA)Mathematics - Functional AnalysisMathematics - Spectral Theory47A63Dirichlet shift MSC (2010): 47A0547A20FOS: Mathematicsdilationsconcave operator2-isometric lifting47A15Spectral Theory (math.SP)
researchProduct

THE CAUCHY DUAL AND 2-ISOMETRIC LIFTINGS OF CONCAVE OPERATORS

2018

We present some 2-isometric lifting and extension results for Hilbert space concave operators. For a special class of concave operators we study their Cauchy dual operators and discuss conditions under which these operators are subnormal. In particular, the quasinormality of compressions of such operators is studied.

Cauchy dual operatorsubnormal operatorPure mathematics[MATH.MATH-FA]Mathematics [math]/Functional Analysis [math.FA]01 natural sciencessymbols.namesakeFOS: Mathematics0101 mathematicsconcave operatorMathematics47A05 47A15 47A20 47A63Mathematics::Functional AnalysisMathematics::Operator AlgebrasApplied Mathematics010102 general mathematicsHilbert spaceCauchy distributionExtension (predicate logic)Special class2-isometric liftingsA-contractionFunctional Analysis (math.FA)Dual (category theory)Mathematics - Functional Analysis010101 applied mathematicssymbolsAnalysis
researchProduct

Maximal Operators with Respect to the Numerical Range

2018

Let $\mathfrak{n}$ be a nonempty, proper, convex subset of $\mathbb{C}$. The $\mathfrak{n}$-maximal operators are defined as the operators having numerical ranges in $\mathfrak{n}$ and are maximal with this property. Typical examples of these are the maximal symmetric (or accretive or dissipative) operators, the associated to some sesquilinear forms (for instance, to closed sectorial forms), and the generators of some strongly continuous semi-groups of bounded operators. In this paper the $\mathfrak{n}$-maximal operators are studied and some characterizations of these in terms of the resolvent set are given.

Strongly continuous semi-groupsPure mathematicsCayley transformSesquilinear form01 natural sciencesSettore MAT/05 - Analisi MatematicaMaximal operator0103 physical sciencesFOS: Mathematics0101 mathematicsMathematics::Representation TheoryNumerical rangeMathematics47A20 47A12 47B44 47A07Resolvent setApplied Mathematics010102 general mathematicsRegular polygonOperator theoryFunctional Analysis (math.FA)Mathematics - Functional AnalysisComputational MathematicsComputational Theory and MathematicsBounded functionDissipative systemSectorStrip010307 mathematical physicsNumerical rangeComplex Analysis and Operator Theory
researchProduct