Search results for "5-7"

showing 10 items of 428 documents

Multi-layer intrusion detection system with ExtraTrees feature selection, extreme learning machine ensemble, and softmax aggregation

2019

Abstract Recent advances in intrusion detection systems based on machine learning have indeed outperformed other techniques, but struggle with detecting multiple classes of attacks with high accuracy. We propose a method that works in three stages. First, the ExtraTrees classifier is used to select relevant features for each type of attack individually for each (ELM). Then, an ensemble of ELMs is used to detect each type of attack separately. Finally, the results of all ELMs are combined using a softmax layer to refine the results and increase the accuracy further. The intuition behind our system is that multi-class classification is quite difficult compared to binary classification. So, we…

Artificial intelligencelcsh:Computer engineering. Computer hardwareExtreme learning machineEnsemble methodsComputer scienceBinary numberlcsh:TK7885-7895Feature selection02 engineering and technologyIntrusion detection systemlcsh:QA75.5-76.95Machine learning0202 electrical engineering electronic engineering information engineeringVDP::Teknologi: 500::Informasjons- og kommunikasjonsteknologi: 550Multi layerExtreme learning machinebusiness.industryIntrusion detection system020206 networking & telecommunicationsPattern recognitionComputer Science ApplicationsBinary classificationFeature selectionSignal ProcessingSoftmax function020201 artificial intelligence & image processinglcsh:Electronic computers. Computer scienceArtificial intelligencebusinessClassifier (UML)EURASIP Journal on Information Security
researchProduct

Estimation of Granger causality through Artificial Neural Networks: applications to physiological systems and chaotic electronic oscillators

2021

One of the most challenging problems in the study of complex dynamical systems is to find the statistical interdependencies among the system components. Granger causality (GC) represents one of the most employed approaches, based on modeling the system dynamics with a linear vector autoregressive (VAR) model and on evaluating the information flow between two processes in terms of prediction error variances. In its most advanced setting, GC analysis is performed through a state-space (SS) representation of the VAR model that allows to compute both conditional and unconditional forms of GC by solving only one regression problem. While this problem is typically solved through Ordinary Least Sq…

Artificial neural networks; Chaotic oscillators; Granger causality; Multivariate time series analysis; Network physiology; Penalized regression techniques; Remote synchronization; State-space models; Stochastic gradient descent L1; Vector autoregressive modelGeneral Computer ScienceDynamical systems theoryComputer science02 engineering and technologyChaotic oscillatorsPenalized regression techniquesNetwork topologySettore ING-INF/01 - ElettronicaMultivariate time series analysisVector autoregression03 medical and health sciences0302 clinical medicineScientific Computing and Simulation0202 electrical engineering electronic engineering information engineeringRepresentation (mathematics)Optimization Theory and ComputationNetwork physiologyState-space modelsArtificial neural networkArtificial neural networksData ScienceTheory and Formal MethodsQA75.5-76.95Stochastic gradient descent L1Granger causality State-space models Vector autoregressive model Artificial neural networks Stochastic gradient descent L1 Multivariate time series analysis Network physiology Remote synchronization Chaotic oscillators Penalized regression techniquesRemote synchronizationStochastic gradient descentAutoregressive modelAlgorithms and Analysis of AlgorithmsVector autoregressive modelElectronic computers. Computer scienceSettore ING-INF/06 - Bioingegneria Elettronica E InformaticaGranger causality020201 artificial intelligence & image processingGradient descentAlgorithm030217 neurology & neurosurgeryPeerJ Computer Science
researchProduct

Minimal clinically important difference for asthma endpoints: an expert consensus report

2020

Minimal clinically important difference (MCID) can be defined as the smallest change or difference in an outcome measure that is perceived as beneficial and would lead to a change in the patient's medical management.The aim of the current expert consensus report is to provide a “state-of-the-art” review of the currently available literature evidence about MCID for end-points to monitor asthma control, in order to facilitate optimal disease management and identify unmet needs in the field to guide future research.A series of MCID cut-offs are currently available in literature and validated among populations of asthmatic patients, with most of the evidence focusing on outcomes as patient repo…

Asthma asthma management minimal clinically important difference end-pointsPulmonary and Respiratory Medicinemedicine.medical_specialtyConsensusDelphi TechniqueEndpoint DeterminationBronchoconstrictionMEDLINEDelphi methodSocio-culturaleSettore MED/10 - MALATTIE DELL'APPARATO RESPIRATORIOminimal clinically important difference; asthma; lung function; biomarkersMCID03 medical and health sciences0302 clinical medicinePredictive Value of TestsmedicineHumansAnti-Asthmatic Agents030212 general & internal medicineDisease management (health)Intensive care medicineLungAsthmalcsh:RC705-779business.industryMinimal clinically important differenceminimal clinically important differenceExpert consensusend-pointslcsh:Diseases of the respiratory systemmedicine.diseaseMCID asthmaAsthmaTreatment Outcome030228 respiratory systemPredictive value of testsEndpoint DeterminationInflammation MediatorsSymptom AssessmentbusinessBiomarkersasthma managementEuropean Respiratory Review
researchProduct

The novel HALO mini-DOAS instrument: inferring trace gas concentrations from airborne UV/visible limb spectroscopy under all skies using the scaling …

2017

Abstract. We report on a novel six-channel optical spectrometer (further on called mini-DOAS instrument) for airborne nadir and limb measurements of atmospheric trace gases, liquid and solid water, and spectral radiances in the UV/vis and NIR spectral ranges. The spectrometer was developed for measurements from aboard the German High-Altitude and Long-Range (HALO) research aircraft during dedicated research missions. Here we report on the relevant instrumental details and the novel scaling method used to infer the mixing ratios of UV/vis absorbing trace gases from their absorption measured in limb geometry. The uncertainties of the scaling method are assessed in more detail than before for …

Atmospheric Science010504 meteorology & atmospheric sciences0207 environmental engineering02 engineering and technology010502 geochemistry & geophysics01 natural sciencesUV/visible limb spectroscopylaw.inventionOpticslawErdsystem-Modellierungddc:550Nadirlcsh:TA170-171020701 environmental engineeringAbsorption (electromagnetic radiation)SpectroscopyScaling0105 earth and related environmental sciencesRemote sensingSpectrometerVerkehrsmeteorologielcsh:TA715-787business.industrylcsh:Earthwork. FoundationsAtmosphärische SpurenstoffeOptical spectrometerlcsh:Environmental engineeringTrace gasHALO mini-DOASEarth sciences13. Climate actionEnvironmental scienceHalobusinessAtmospheric Measurement Techniques
researchProduct

Design, construction and commissioning of the Braunschweig Icing Wind Tunnel

2018

Beyond its physical importance in both fundamental and climate research, atmospheric icing is considered as a severe operational condition in many engineering applications like aviation, electrical power transmission and wind-energy production. To reproduce such icing conditions in a laboratory environment, icing wind tunnels are frequently used. In this paper, a comprehensive overview on the design, construction and commissioning of the Braunschweig Icing Wind Tunnel is given. The tunnel features a test section of 0.5 m  ×  0.5 m with peak velocities of up to 40 m s−1. The static air temperature ranges from −25 to +30 °C. Supercooled droplet icing with liquid water contents up to 3 g m−3 c…

Atmospheric Science010504 meteorology & atmospheric sciencesMeteorologyMesoscale meteorology02 engineering and technology7. Clean energy01 natural sciencesArticlelaw.inventionPhysics::GeophysicsIcing conditions0203 mechanical engineeringlawddc:6Veröffentlichung der TU Braunschweigicing wind tunnelddc:62lcsh:TA170-171WolkenphysikPhysics::Atmospheric and Oceanic Physics0105 earth and related environmental sciencesIcingWind tunnel[SDU.OCEAN]Sciences of the Universe [physics]/Ocean Atmosphere020301 aerospace & aeronauticsIce crystalslcsh:TA715-787lcsh:Earthwork. FoundationsCondensed Matter::Mesoscopic Systems and Quantum Hall EffectAtmospheric icinglcsh:Environmental engineeringPhysics::Space PhysicsParticleEnvironmental scienceAstrophysics::Earth and Planetary AstrophysicsCloud chamberddc:620Publikationsfonds der TU BraunschweigMarine engineering
researchProduct

Optimal use of the Prede POM sky radiometer for aerosol, water vapor, and ozone retrievals

2021

The Prede POM sky radiometer is a filter radiometer deployed worldwide in the SKYNET international network. A new method, called Skyrad pack MRI version 2 (MRI v2), is presented here to retrieve aerosol properties (size distribution, real and imaginary parts of the refractive index, single-scattering albedo, asymmetry factor, lidar ratio, and linear depolarization ratio), water vapor, and ozone column concentrations from the sky radiometer measurements. MRI v2 overcomes two limitations of previous methods (Skyrad pack versions 4.2 and 5, MRI version 1). One is the use of all the wavelengths of 315, 340, 380, 400, 500, 675, 870, 940, 1020, 1627, and 2200 nm if available from the sky radiomet…

Atmospheric Science010504 meteorology & atmospheric sciencesaerosolEnvironmental engineering01 natural sciencesCape verde03 medical and health sciencesEarthwork. FoundationsRadiative transferretrievalZenith030304 developmental biology0105 earth and related environmental sciencesRemote sensing0303 health sciencesRadiometerTA715-787TA170-171AlbedoAerosolwater vapourozonesky radiometerLidarAlmucantarradiative transferEnvironmental scienceAtmospheric Measurement Techniques
researchProduct

The airborne mass spectrometer AIMS – Part 2: Measurements of trace gases with stratospheric or tropospheric origin in the UTLS

2016

Understanding the role of climate-sensitive trace gas variabilities in the upper troposphere and lower stratosphere region (UTLS) and their impact on its radiative budget requires accurate measurements. The composition of the UTLS is governed by transport and chemistry of stratospheric and tropospheric constituents, such as chlorine, nitrogen oxide and sulfur compounds. The Atmospheric chemical Ionization Mass Spectrometer AIMS has been developed to accurately measure a set of these constituents on aircraft by means of chemical ionization. Here we present a setup using SF5− reagent ions for the simultaneous measurement of trace gas concentrations of HCl, HNO3 and SO2 in the  pptv to ppmv (1…

Atmospheric Science010504 meteorology & atmospheric scienceslcsh:TA715-787ChemistryMass spectrometerlcsh:Earthwork. FoundationsAtmosphärische SpurenstoffeTACTS-ESMVal010501 environmental sciencesMass spectrometryAtmospheric sciences01 natural sciencesIon sourcelcsh:Environmental engineeringTrace gasTropospherechemistry.chemical_compoundUTLSHALONitrogen oxidelcsh:TA170-171TropopauseStratosphereWater vapor0105 earth and related environmental sciences
researchProduct

An overview of and issues with sky radiometer technology and SKYNET

2020

This paper is an overview of the progress in sky radiometer technology and the development of the network called SKYNET. It is found that the technology has produced useful on-site calibration methods, retrieval algorithms, and data analyses from sky radiometer observations of aerosol, cloud, water vapor, and ozone. A formula was proposed for estimating the accuracy of the sky radiometer calibration constant F0 using the improved Langley (IL) method, which was found to be a good approximation to observed monthly mean uncertainty in F0, around 0.5 % to 2.4 % at the Tokyo and Rome sites and smaller values of around 0.3 % to 0.5 % at the mountain sites at Mt. Sarasw…

Atmospheric Science010504 meteorology & atmospheric sciencesphotometrymedia_common.quotation_subjectskynet networkSKYNET010501 environmental sciences01 natural scienceslcsh:TA170-1710105 earth and related environmental sciencesmedia_commonRemote sensingAerosolsRadiometerDobson unitlcsh:TA715-787lcsh:Earthwork. FoundationsDiffuse sky radiationAlbedoaerosol optical propertiesAerosolAERONETlcsh:Environmental engineeringsky radiometerAtmosferaSkyEnvironmental scienceAtmospheric Measurement Techniques
researchProduct

Nano-hygroscopicity tandem differential mobility analyzer (nano-HTDMA) for investigating hygroscopic properties of sub-10 nm aerosol nanoparticles

2020

Interactions between water and nanoparticles are relevant for atmospheric multiphase processes, physical chemistry, and materials science. Current knowledge of the hygroscopic and related physicochemical properties of nanoparticles, however, is restricted by the limitations of the available measurement techniques. Here, we present the design and performance of a nano-hygroscopicity tandem differential mobility analyzer (nano-HTDMA) apparatus that enables high accuracy and precision in hygroscopic growth measurements of aerosol nanoparticles with diameters less than 10 nm. Detailed methods of calibration and validation are provided. Besides maintaining accurate and stable sheath and a…

Atmospheric ScienceAccuracy and precisionMaterials science010504 meteorology & atmospheric sciencesTandemlcsh:TA715-787lcsh:Earthwork. FoundationsNanoparticleNanotechnology02 engineering and technology021001 nanoscience & nanotechnology01 natural sciencesSizinglcsh:Environmental engineeringVolumetric flow rateAerosolDifferential mobility analyzerNano-lcsh:TA170-1710210 nano-technology0105 earth and related environmental sciencesAtmospheric Measurement Techniques
researchProduct

Determination and analysis of in situ spectral aerosol optical properties by a multi-instrumental approach

2014

Continuous in situ measurements of aerosol optical properties were conducted from 29 June to 29 July 2012 in Granada (Spain) with a seven-wavelength Aethalometer, a Multi-Angle Absorption Photometer, and a three-wavelength integrating nephelometer. The aim of this work is to describe a methodology to obtain the absorption coefficients (babs) for the different Aethalometer wavelengths. In this way, data have been compensated using algorithms which best estimate the compensation factors needed. Two empirical factors are used to infer the absorption coefficients from the Aethalometer measurements: C – the parameter describing the enhancement of absorption by particles in the filter matrix due …

Atmospheric ScienceAngstrom exponentAbsorption coefficientsMaterials science010504 meteorology & atmospheric sciencesAnalytical chemistry010501 environmental sciencesAethalometer01 natural sciencesGranada (Spain)Light scatteringlaw.inventionOpticslawlcsh:TA170-171Absorption (electromagnetic radiation)0105 earth and related environmental sciencesNephelometerlcsh:TA715-787business.industrylcsh:Earthwork. FoundationsAerosol optical propertiesPhotometerlcsh:Environmental engineeringAerosolWavelengthbusiness
researchProduct