Search results for "5-hydroxymethylcytosine"

showing 2 items of 2 documents

Redox regulation of genome stability by effects on gene expression, epigenetic pathways and DNA damage/repair

2015

Reactive oxygen and nitrogen species (e.g. H2O2, nitric oxide) confer redox regulation of essential cellular signaling pathways such as cell differentiation, proliferation, migration and apoptosis. In addition, classical regulation of gene expression or activity, including gene transcription to RNA followed by translation to the protein level, by transcription factors (e.g. NF-κB, HIF-1α) and mRNA binding proteins (e.g. GAPDH, HuR) is subject to redox regulation. This review will give an update of recent discoveries in this field, and specifically highlight the impact of reactive oxygen and nitrogen species on DNA repair systems that contribute to genomic stability. Emphasis will be placed …

Genome instabilityRedox signalingRNA UntranslatedEpigenetic regulation of neurogenesisDNA RepairHuR mRNA-binding protein in the 3′-untranslated regionClinical BiochemistryHDAC histone deacetylaseReview ArticleAP-1 activator protein 1BiochemistryApe-1 apurinic/apyrimidinic endonuclease 1GPx-1 glutathione peroxidase-1Epigenesis GeneticHistonesTrx thioredoxinPHD prolylhydroxylaseBER base excision repairlcsh:QH301-705.5HO-1 heme oxygenase-1EpigenomicsGeneticsRegulation of gene expressionNox member of the NADPH oxidase familylcsh:R5-920JmjC Jumonji C domain-containing histone demethylasesHIF-1α hypoxia inducible factor-1α5-hmC 5-hydroxymethylcytosineddc:Cell biologyMMP matrix metalloproteinaseGrx glutaredoxinGAPDH glyceraldehyde-3-phosphate dehydrogenaseNrf2 nuclear factor erythroid related factor 2DNA methylationEpigeneticslcsh:Medicine (General)Oxidation-ReductionSignal Transduction5-mC 5-methylcytosineDNA repairDNA damageNF-κB nuclear factor-κBBiologyGenomic InstabilityRNS reactive nitrogen speciesROS reactive oxygen speciesNER nucleotide excision repairSOD superoxide dismutaseOxyR transcription factor (hydrogen peroxide-inducible genes activator)HumansEpigeneticsOrganic ChemistryPETN pentaerithrityl tetranitrateGene regulationOxidative StressDNMT DNA methyltransferaseGene Expression Regulationlcsh:Biology (General)AREs AU-rich elementsHAT histone acetyltransferaseKeap1 kelch-like ECH-associated protein 1BiomarkersCOPD chronic obstructive pulmonary disorderDNA DamageRedox Biology
researchProduct

Induction of radiata pine somatic embryogenesis at high temperatures provokes a long-term decrease in dna methylation/hydroxymethylation and differen…

2020

Based on the hypothesis that embryo development is a crucial stage for the formation of stable epigenetic marks that could modulate the behaviour of the resulting plants, in this study, radiata pine somatic embryogenesis was induced at high temperatures (23 &deg

0106 biological sciences0301 basic medicineanimal structuresSomatic embryogenesisSomatic cellheat shock proteinPlant Scienceepigenetics; 5-hydroxymethylcytosine; 5-methylcytosine; heat; heat shock protein; memory; Pinus radiata; priming; somatic embryo; somatic plantBiology01 natural sciencesArticleTranscriptomememory03 medical and health sciencessomatic embryoMemorylcsh:BotanyHeat shock proteinEpigenetics5-hydroxymethylcytosine5-methylcytosineprimingEcology Evolution Behavior and SystematicsPinus radiataHeat shock proteinEcologyepigeneticsEmbryogenesisfungiSomatic embryofood and beveragesMethylationHeat<i>Pinus radiata</i>lcsh:QK1-989Cell biologySomatic plant030104 developmental biologysomatic plantPrimingDNA methylationEpigeneticsheat010606 plant biology & botany
researchProduct