Search results for "530 Physik"
showing 10 items of 149 documents
Direct Imaging of Current-Induced Antiferromagnetic Switching Revealing a Pure Thermomagnetoelastic Switching Mechanism in NiO.
2020
We unravel the origin of current-induced magnetic switching of insulating antiferromagnet/heavy metal systems. We utilize concurrent transport and magneto-optical measurements to image the switching of antiferromagnetic domains in specially engineered devices of NiO/Pt bilayers. Different electrical pulsing and device geometries reveal different final states of the switching with respect to the current direction. We can explain these through simulations of the temperature induced strain and we identify the thermomagnetoelastic switching mechanism combined with thermal excitations as the origin, in which the final state is defined by the strain distributions and heat is required to switch th…
Spin structure and spin Hall magnetoresistance of epitaxial thin films of the insulating non-collinear antiferromagnet SmFeO3
2019
We report a combined study of imaging the antiferromagnetic (AFM) spin structure and measuring the spin Hall magnetoresistance (SMR) in epitaxial thin films of the insulating non-collinear antiferromagnet SmFeO$_3$. X-ray magnetic linear dichroism photoemission electron microscopy measurements reveal that the AFM spins of the SmFeO$_3$(110) align in the plane of the film. Angularly dependent magnetoresistance measurements show that SmFeO$_3$/Ta bilayers exhibit a positive SMR, in contrast to the negative SMR expected in previously studied collinear AFMs. The SMR amplitude increases linearly with increasing external magnetic field at higher magnetic field, suggesting that field-induced canti…
Magnon detection using a ferroic collinear multilayer spin valve
2018
Information transport and processing by pure magnonic spin currents in insulators is a promising alternative to conventional charge-current-driven spintronic devices. The absence of Joule heating and reduced spin wave damping in insulating ferromagnets have been suggested for implementing efficient logic devices. After the successful demonstration of a majority gate based on the superposition of spin waves, further components are required to perform complex logic operations. Here, we report on magnetization orientation-dependent spin current detection signals in collinear magnetic multilayers inspired by the functionality of a conventional spin valve. In Y3Fe5O12|CoO|Co, we find that the de…
Structural sensitivity of the spin Hall magnetoresistance in antiferromagnetic thin films
2020
A. Ross and M.K. acknowledge support from the Graduate School of Excellence Materials Science in Mainz (Grant No.DFG/GSC 266). This work was supported by the Max Planck Graduate Center with the Johannes Gutenberg-Universitat Mainz (MPGC). A. Ross, R.L., and M.K. acknowledge support from the DFG Projects No. 423441604 and No. 403502522. R.L. acknowledges the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie Grant Agreement FAST No. 752195. All authors from Mainz also acknowledge support from both MaHoJeRo (DAAD Spintronics network, Project No. 57334897), SPIN+X (DFG SFB TRR 173, Project No. A01) and KAUST (Grant No. OSR-2019-CRG8-4048.2). D.A.G.…
Broadband Terahertz Probes of Anisotropic Magnetoresistance Disentangle Extrinsic and Intrinsic Contributions
2021
Anisotropic magnetoresistance (AMR) is a ubiquitous and versatile probe of magnetic order in contemporary spintronics research. Its origins are usually ascribed to extrinsic effects (i.e. spin-dependent electron scattering), whereas intrinsic (i.e. scattering-independent) contributions are neglected. Here, we measure AMR of polycrystalline thin films of the standard ferromagnets Co, Ni, Ni81Fe19 and Ni50Fe50 over the frequency range from DC to 28 THz. The large bandwidth covers the regimes of both diffusive and ballistic intraband electron transport and, thus, allows us to separate extrinsic and intrinsic AMR components. Analysis of the THz response based on Boltzmann transport theory revea…
Domain wall transformations and hopping in La0.7Sr0.3MnO3nanostructures imaged with high resolution x-ray magnetic microscopy
2014
We investigate the effect of electric current pulse injection on domain walls in La(0.7)Sr(0.3)MnO(3) (LSMO) half-ring nanostructures by high resolution x-ray magnetic microscopy at room temperature. Due to the easily accessible Curie temperature of LSMO, we can employ reasonable current densities to induce the Joule heating necessary to observe effects such as hopping of the domain walls between different pinning sites and nucleation/annihilation events. Such effects are the dominant features close to the Curie temperature, while spin torque is found to play a small role close to room temperature. We are also able to observe thermally activated domain wall transformations and we find that,…
Enhancement of spin Hall conductivity in W-Ta alloy
2020
Generating pure spin currents via the spin Hall effect in heavy metals has been an active topic of research in the last decade. In order to reduce the energy required to efficiently switch neighbouring ferromagnetic layers for applications, one should not only increase the charge- to-spin conversion efficiency but also decrease the longitudinal resistivity of the heavy metal. In this work, we investigate the spin Hall conductivity in W_{1-x}Ta_{x} / CoFeB / MgO (x = 0 - 0.2) using spin torque ferromagnetic resonance measurements. Alloying W with Ta leads to a factor of two change in both the damping-like effective spin Hall angle (from - 0.15 to - 0.3) and longitudinal resistivity (60 - 120…
Impact of nitrogen doping on the band structure and the charge carrier scattering in monolayer graphene
2021
The addition of nitrogen as a dopant in monolayer graphene is a flexible approach to tune the electronic properties of graphene as required for applications. Here, we investigate the impact of the doping process that adds N dopants and defects on the key electronic properties, such as the mobility, the effective mass, the Berry phase, and the scattering times of the charge carriers. Measurements at low temperatures and magnetic fields up to 9 T show a decrease of the mobility with increasing defect density due to elastic, short-range scattering. At low magnetic fields weak localization indicates an inelastic contribution depending on both defects and dopants. Analysis of the effective mass …
Antenna-coupled spintronic terahertz emitters driven by a 1550 nm femtosecond laser oscillator
2019
We demonstrate antenna-coupled spintronic terahertz (THz) emitters excited by 1550 nm, 90 fs laser pulses. Antennas are employed to optimize THz outcoupling and frequency coverage of ferromagnetic/nonmagnetic metallic spintronic structures. We directly compare the antenna-coupled devices to those without antennas. Using a 200 μm H-dipole antenna and an ErAs:InGaAs photoconductive receiver, we obtain a 2.42-fold larger THz peak-peak signal, a bandwidth of 4.5 THz, and an increase in the peak dynamic range (DNR) from 53 dB to 65 dB. A 25 μm slotline antenna offered 5 dB larger peak DNR and a bandwidth of 5 THz. For all measurements, we use a comparatively low laser power of 45 mW from a comme…
Direct Imaging of Chiral Domain Walls and Néel‐Type Skyrmionium in Ferrimagnetic Alloys
2021
International audience; The evolution of chiral spin structures is studied in ferrimagnet Ta/Ir/Fe/GdFeCo/Pt multilayers as a function of temperature using scanning electron microscopy with polarization analysis (SEMPA). The GdFeCo ferrimagnet exhibits pure right-hand Néel-type domain wall (DW) spin textures over a large temperature range. This indicates the presence of a negative Dzyaloshinskii-Moriya interaction (DMI) that can originate from both the top Fe/Pt and the Co/Pt interfaces. From measurements of the DW width, as well as complementary magnetic characterization, the exchange stiffness as a function of temperature is ascertained. The exchange stiffness is surprisingly mostly const…