Search results for "530 Physik"

showing 10 items of 149 documents

Direct Imaging of Current-Induced Antiferromagnetic Switching Revealing a Pure Thermomagnetoelastic Switching Mechanism in NiO.

2020

We unravel the origin of current-induced magnetic switching of insulating antiferromagnet/heavy metal systems. We utilize concurrent transport and magneto-optical measurements to image the switching of antiferromagnetic domains in specially engineered devices of NiO/Pt bilayers. Different electrical pulsing and device geometries reveal different final states of the switching with respect to the current direction. We can explain these through simulations of the temperature induced strain and we identify the thermomagnetoelastic switching mechanism combined with thermal excitations as the origin, in which the final state is defined by the strain distributions and heat is required to switch th…

Materials scienceMagnetic domain530 PhysicsFOS: Physical sciencesBioengineering02 engineering and technologyThermalMesoscale and Nanoscale Physics (cond-mat.mes-hall)AntiferromagnetismTorqueGeneral Materials ScienceCondensed Matter - Materials ScienceCondensed Matter - Mesoscale and Nanoscale PhysicsCondensed matter physicsSpintronicsMechanical EngineeringNon-blocking I/OMaterials Science (cond-mat.mtrl-sci)General Chemistry021001 nanoscience & nanotechnologyCondensed Matter Physics530 PhysikMechanism (engineering)Condensed Matter::Strongly Correlated ElectronsCurrent (fluid)0210 nano-technologyNano letters
researchProduct

Spin structure and spin Hall magnetoresistance of epitaxial thin films of the insulating non-collinear antiferromagnet SmFeO3

2019

We report a combined study of imaging the antiferromagnetic (AFM) spin structure and measuring the spin Hall magnetoresistance (SMR) in epitaxial thin films of the insulating non-collinear antiferromagnet SmFeO$_3$. X-ray magnetic linear dichroism photoemission electron microscopy measurements reveal that the AFM spins of the SmFeO$_3$(110) align in the plane of the film. Angularly dependent magnetoresistance measurements show that SmFeO$_3$/Ta bilayers exhibit a positive SMR, in contrast to the negative SMR expected in previously studied collinear AFMs. The SMR amplitude increases linearly with increasing external magnetic field at higher magnetic field, suggesting that field-induced canti…

Materials scienceMagnetoresistance530 PhysicsFOS: Physical sciences02 engineering and technologySpin structure01 natural sciencesspin Hall magnetoresistancelinear dichroismMagnetizationPEEMCondensed Matter::Materials Science0103 physical sciencesMesoscale and Nanoscale Physics (cond-mat.mes-hall)AntiferromagnetismGeneral Materials Science010306 general physicsSpin-½antiferromagnetCondensed Matter - Materials ScienceCondensed Matter - Mesoscale and Nanoscale PhysicsCondensed matter physicsX-ray magnetictechnology industry and agricultureMaterials Science (cond-mat.mtrl-sci)Coercivity021001 nanoscience & nanotechnologyCondensed Matter Physics530 PhysikMagnetic fieldPhotoemission electron microscopyorthoferriteCondensed Matter::Strongly Correlated Electrons0210 nano-technologyJournal of Physics: Condensed Matter
researchProduct

Magnon detection using a ferroic collinear multilayer spin valve

2018

Information transport and processing by pure magnonic spin currents in insulators is a promising alternative to conventional charge-current-driven spintronic devices. The absence of Joule heating and reduced spin wave damping in insulating ferromagnets have been suggested for implementing efficient logic devices. After the successful demonstration of a majority gate based on the superposition of spin waves, further components are required to perform complex logic operations. Here, we report on magnetization orientation-dependent spin current detection signals in collinear magnetic multilayers inspired by the functionality of a conventional spin valve. In Y3Fe5O12|CoO|Co, we find that the de…

Materials scienceMagnetoresistance530 PhysicsScienceSpin valveGeneral Physics and Astronomy02 engineering and technology01 natural sciencesArticleGeneral Biochemistry Genetics and Molecular BiologyMagnetizationCondensed Matter::Materials ScienceSpin wave0103 physical sciencesddc:530010306 general physicslcsh:ScienceSpin-½MultidisciplinaryCondensed matter physicsSpintronicsCondensed Matter::OtherMagnonQGeneral Chemistry021001 nanoscience & nanotechnology530 PhysikFerromagnetismCondensed Matter::Strongly Correlated Electronslcsh:Q0210 nano-technologyNature Communications
researchProduct

Structural sensitivity of the spin Hall magnetoresistance in antiferromagnetic thin films

2020

A. Ross and M.K. acknowledge support from the Graduate School of Excellence Materials Science in Mainz (Grant No.DFG/GSC 266). This work was supported by the Max Planck Graduate Center with the Johannes Gutenberg-Universitat Mainz (MPGC). A. Ross, R.L., and M.K. acknowledge support from the DFG Projects No. 423441604 and No. 403502522. R.L. acknowledges the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie Grant Agreement FAST No. 752195. All authors from Mainz also acknowledge support from both MaHoJeRo (DAAD Spintronics network, Project No. 57334897), SPIN+X (DFG SFB TRR 173, Project No. A01) and KAUST (Grant No. OSR-2019-CRG8-4048.2). D.A.G.…

Materials scienceMagnetoresistance530 Physicsmedia_common.quotation_subjectLibrary scienceFOS: Physical sciences02 engineering and technology01 natural sciencesCondensed Matter::Materials ScienceExcellencePolitical science0103 physical sciencesmedia_common.cataloged_instanceAntiferromagnetismEuropean unionThin film010306 general physicsmedia_commonSpin-½Condensed Matter - Materials ScienceCondensed matter physicsEuropean researchtechnology industry and agricultureMaterials Science (cond-mat.mtrl-sci)021001 nanoscience & nanotechnology530 PhysikResearch councilChristian ministryCondensed Matter::Strongly Correlated Electrons0210 nano-technologyPhysical Review B
researchProduct

Broadband Terahertz Probes of Anisotropic Magnetoresistance Disentangle Extrinsic and Intrinsic Contributions

2021

Anisotropic magnetoresistance (AMR) is a ubiquitous and versatile probe of magnetic order in contemporary spintronics research. Its origins are usually ascribed to extrinsic effects (i.e. spin-dependent electron scattering), whereas intrinsic (i.e. scattering-independent) contributions are neglected. Here, we measure AMR of polycrystalline thin films of the standard ferromagnets Co, Ni, Ni81Fe19 and Ni50Fe50 over the frequency range from DC to 28 THz. The large bandwidth covers the regimes of both diffusive and ballistic intraband electron transport and, thus, allows us to separate extrinsic and intrinsic AMR components. Analysis of the THz response based on Boltzmann transport theory revea…

Materials scienceMagnetoresistanceTerahertz radiation530 PhysicsQC1-999General Physics and AstronomyFOS: Physical sciences01 natural sciences530010305 fluids & plasmasTerahertz time-domain spectroscopy0103 physical sciencesMesoscale and Nanoscale Physics (cond-mat.mes-hall)ddc:530Thin film010306 general physicsTerahertz time-domain spectroscopySpintronicsCondensed matter physicsCondensed Matter - Mesoscale and Nanoscale Physicsbusiness.industryPhysics500 Naturwissenschaften und Mathematik::530 Physik::530 PhysikAnisotropic magnetoresistanceSpintronics530 PhysikFerromagnetismPhotonicsbusinessElectron scattering
researchProduct

Domain wall transformations and hopping in La0.7Sr0.3MnO3nanostructures imaged with high resolution x-ray magnetic microscopy

2014

We investigate the effect of electric current pulse injection on domain walls in La(0.7)Sr(0.3)MnO(3) (LSMO) half-ring nanostructures by high resolution x-ray magnetic microscopy at room temperature. Due to the easily accessible Curie temperature of LSMO, we can employ reasonable current densities to induce the Joule heating necessary to observe effects such as hopping of the domain walls between different pinning sites and nucleation/annihilation events. Such effects are the dominant features close to the Curie temperature, while spin torque is found to play a small role close to room temperature. We are also able to observe thermally activated domain wall transformations and we find that,…

Materials scienceNanostructure530 PhysicsNucleation01 natural sciencesCondensed Matter::Materials ScienceLanthanum0103 physical sciencesMicroscopyddc:530General Materials Science010306 general physicsSpin (physics)010302 applied physicsMicroscopyCondensed matter physicsMagnetic PhenomenaX-RaysElectric ConductivityTemperatureOxides530 PhysikCondensed Matter PhysicsNanostructuresVortexDomain wall (magnetism)Manganese CompoundsStrontiumCurie temperatureCondensed Matter::Strongly Correlated ElectronsJoule heatingJournal of Physics: Condensed Matter
researchProduct

Enhancement of spin Hall conductivity in W-Ta alloy

2020

Generating pure spin currents via the spin Hall effect in heavy metals has been an active topic of research in the last decade. In order to reduce the energy required to efficiently switch neighbouring ferromagnetic layers for applications, one should not only increase the charge- to-spin conversion efficiency but also decrease the longitudinal resistivity of the heavy metal. In this work, we investigate the spin Hall conductivity in W_{1-x}Ta_{x} / CoFeB / MgO (x = 0 - 0.2) using spin torque ferromagnetic resonance measurements. Alloying W with Ta leads to a factor of two change in both the damping-like effective spin Hall angle (from - 0.15 to - 0.3) and longitudinal resistivity (60 - 120…

Materials sciencePhysics and Astronomy (miscellaneous)530 PhysicsAlloyFOS: Physical sciences02 engineering and technologyengineering.material01 natural sciencesMetalCondensed Matter::Materials ScienceElectrical resistivity and conductivity0103 physical sciencesSpin-½010302 applied physicsCondensed Matter - Materials ScienceCondensed matter physicsEnergy conversion efficiencyMaterials Science (cond-mat.mtrl-sci)021001 nanoscience & nanotechnology530 PhysikFerromagnetic resonanceFerromagnetismvisual_artSpin Hall effectvisual_art.visual_art_mediumengineeringCondensed Matter::Strongly Correlated Electrons0210 nano-technology
researchProduct

Impact of nitrogen doping on the band structure and the charge carrier scattering in monolayer graphene

2021

The addition of nitrogen as a dopant in monolayer graphene is a flexible approach to tune the electronic properties of graphene as required for applications. Here, we investigate the impact of the doping process that adds N dopants and defects on the key electronic properties, such as the mobility, the effective mass, the Berry phase, and the scattering times of the charge carriers. Measurements at low temperatures and magnetic fields up to 9 T show a decrease of the mobility with increasing defect density due to elastic, short-range scattering. At low magnetic fields weak localization indicates an inelastic contribution depending on both defects and dopants. Analysis of the effective mass …

Materials sciencePhysics and Astronomy (miscellaneous)DopantCondensed matter physics530 PhysicsScatteringGrapheneDoping530 Physiklaw.inventionWeak localizationCondensed Matter::Materials Sciencesymbols.namesakeEffective mass (solid-state physics)Dirac fermionlawPhysics::Atomic and Molecular ClusterssymbolsGeneral Materials ScienceCharge carrierPhysical Review Materials
researchProduct

Antenna-coupled spintronic terahertz emitters driven by a 1550 nm femtosecond laser oscillator

2019

We demonstrate antenna-coupled spintronic terahertz (THz) emitters excited by 1550 nm, 90 fs laser pulses. Antennas are employed to optimize THz outcoupling and frequency coverage of ferromagnetic/nonmagnetic metallic spintronic structures. We directly compare the antenna-coupled devices to those without antennas. Using a 200 μm H-dipole antenna and an ErAs:InGaAs photoconductive receiver, we obtain a 2.42-fold larger THz peak-peak signal, a bandwidth of 4.5 THz, and an increase in the peak dynamic range (DNR) from 53 dB to 65 dB. A 25 μm slotline antenna offered 5 dB larger peak DNR and a bandwidth of 5 THz. For all measurements, we use a comparatively low laser power of 45 mW from a comme…

Materials sciencePhysics and Astronomy (miscellaneous)Terahertz radiation02 engineering and technology01 natural sciences530law.inventionlawantenna-coupled spintronic terahertz emitterslaser oscillator0103 physical sciencesLaser power scaling010302 applied physicsSpintronicsbusiness.industryDynamic rangePhotoconductivityBandwidth (signal processing)500 Naturwissenschaften und Mathematik::530 Physik::530 Physik021001 nanoscience & nanotechnologyLaserFemtosecondOptoelectronicsterahertz emitters0210 nano-technologybusiness
researchProduct

Direct Imaging of Chiral Domain Walls and Néel‐Type Skyrmionium in Ferrimagnetic Alloys

2021

International audience; The evolution of chiral spin structures is studied in ferrimagnet Ta/Ir/Fe/GdFeCo/Pt multilayers as a function of temperature using scanning electron microscopy with polarization analysis (SEMPA). The GdFeCo ferrimagnet exhibits pure right-hand Néel-type domain wall (DW) spin textures over a large temperature range. This indicates the presence of a negative Dzyaloshinskii-Moriya interaction (DMI) that can originate from both the top Fe/Pt and the Co/Pt interfaces. From measurements of the DW width, as well as complementary magnetic characterization, the exchange stiffness as a function of temperature is ascertained. The exchange stiffness is surprisingly mostly const…

Materials scienceSpintronicsCondensed matter physics530 PhysicsSkyrmionDirect imaging02 engineering and technologyType (model theory)021001 nanoscience & nanotechnologyCondensed Matter Physics530 Physik01 natural sciences[PHYS.COND.CM-MS] Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci]Electronic Optical and Magnetic MaterialsDomain (software engineering)BiomaterialsFerrimagnetism0103 physical sciencesElectrochemistry[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci]chirals ; Neel domain walls ; skyrmioniums ; skyrmions spintronics010306 general physics0210 nano-technologyAdvanced Functional Materials
researchProduct