Search results for "53C20"

showing 9 items of 9 documents

Differentiability of the isoperimetric profile and topology of analytic Riemannian manifolds

2012

Abstract We show that smooth isoperimetric profiles are exceptional for real analytic Riemannian manifolds. For instance, under some extra assumptions, this can happen only on topological spheres. To cite this article: R. Grimaldi et al., C. R. Acad. Sci. Paris, Ser. I 347 (2009).

Mathematics - Differential GeometryIsoperimetric dimensionRiemannian geometryTopology01 natural sciencessymbols.namesakeRicci-flat manifoldFOS: MathematicsDifferentiable functionMorse theory0101 mathematicsTopology (chemistry)Computer Science::DatabasesIsoperimetric inequalityMorse theoryMathematicsRiemann surface010102 general mathematicsGeneral Medicinecalibration53C20;49Q20;14P15;32B20010101 applied mathematicsDifferential Geometry (math.DG)Riemann surface[MATH.MATH-DG]Mathematics [math]/Differential Geometry [math.DG]symbolsMathematics::Differential GeometryIsoperimetric inequality
researchProduct

One-parameter family of Clairaut-Liouville metrics

2007

Riemannian metrics with singularities are considered on the $2$-sphere of revolution. The analysis of such singularities is motivated by examples stemming from mechanics and related to projections of higher dimensional (regular) sub-Riemannian distributions. An unfolding of the metrics in the form of an homotopy from the canonical metric on $\SS^2$ is defined which allows to analyze the singular case as a limit of standard Riemannian ones. A bifurcation of the conjugate locus for points on the singularity is finally exhibited.

[ MATH.MATH-OC ] Mathematics [math]/Optimization and Control [math.OC]space mechanics49K15 53C20 70Q05$2$-sphere of revolution[MATH.MATH-OC] Mathematics [math]/Optimization and Control [math.OC][MATH.MATH-OC]Mathematics [math]/Optimization and Control [math.OC]Mathematics::Differential Geometryunfolding
researchProduct

Bounded geometry, growth and topology

2010

We characterize functions which are growth types of Riemannian manifolds of bounded geometry.

Mathematics - Differential GeometryMathematics(all)bounded geometryGeneral MathematicsgrowthAbsolute geometryGeometryRiemannian geometry53C20Topology01 natural sciencesQuasi-isometriessymbols.namesakeGrowth types0103 physical sciencesFOS: Mathematics0101 mathematicsMathematics::Symplectic GeometryGeometry and topologyMathematicsvolumeCurvature of Riemannian manifoldsApplied MathematicsComputer Science::Information Retrieval010102 general mathematicsMathematical analysisMathematics::Geometric Topologyfinite topological typeDifferential geometryDifferential Geometry (math.DG)[MATH.MATH-DG]Mathematics [math]/Differential Geometry [math.DG]Bounded functionsymbols010307 mathematical physicsMathematics::Differential GeometryConformal geometryGraphsSymplectic geometry
researchProduct

Conjugate and cut loci of a two-sphere of revolution with application to optimal control

2008

Abstract The objective of this article is to present a sharp result to determine when the cut locus for a class of metrics on a two-sphere of revolution is reduced to a single branch. This work is motivated by optimal control problems in space and quantum dynamics and gives global optimal results in orbital transfer and for Lindblad equations in quantum control.

[ MATH.MATH-OC ] Mathematics [math]/Optimization and Control [math.OC]0209 industrial biotechnologyWork (thermodynamics)Class (set theory)Quantum dynamicsCut locus02 engineering and technologySpace (mathematics)01 natural sciencesspace and quantum mechanicsoptimal control020901 industrial engineering & automationconjugate and cut loci0101 mathematics2-spheres of revolutionMathematical PhysicsMathematicsApplied Mathematics010102 general mathematicsMathematical analysis[MATH.MATH-OC] Mathematics [math]/Optimization and Control [math.OC]53C20; 53C21; 49K15; 70Q05Optimal controlMetric (mathematics)[MATH.MATH-OC]Mathematics [math]/Optimization and Control [math.OC]Orbital maneuverAnalysis
researchProduct

Semianalyticity of isoperimetric profiles

2009

It is shown that, in dimensions $<8$, isoperimetric profiles of compact real analytic Riemannian manifolds are semi-analytic.

Mathematics - Differential Geometry0209 industrial biotechnologyRiemannian Geometry Real Analytic Geometry Geometric measure Theory Metric Geometry Geometric Analysis.Calibration (statistics)02 engineering and technologyAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciencessymbols.namesake020901 industrial engineering & automationFOS: MathematicsMathematics::Metric GeometryMorse theory0101 mathematicsMathematics::Symplectic GeometryIsoperimetric inequalityMorse theoryMathematicsRiemann surface010102 general mathematicsMathematical analysis53C20;49Q20;14P15;32B20Differential Geometry (math.DG)Computational Theory and Mathematics[MATH.MATH-DG]Mathematics [math]/Differential Geometry [math.DG]Riemann surfaceCalibrationsymbolsGeometry and TopologyMathematics::Differential GeometryIsoperimetric inequalityAnalysis
researchProduct

Injectivity domain of ellipsoid of revolution. The oblate case.

2010

Study of the convexity of the injectivity domains on an oblate ellipsoid.

[ MATH.MATH-OC ] Mathematics [math]/Optimization and Control [math.OC]Injectivity domainOblate ellipsoidElliptic functions[MATH.MATH-OC] Mathematics [math]/Optimization and Control [math.OC][MATH.MATH-OC]Mathematics [math]/Optimization and Control [math.OC]53C20
researchProduct

A sharp quantitative version of Alexandrov's theorem via the method of moving planes

2015

We prove the following quantitative version of the celebrated Soap Bubble Theorem of Alexandrov. Let $S$ be a $C^2$ closed embedded hypersurface of $\mathbb{R}^{n+1}$, $n\geq1$, and denote by $osc(H)$ the oscillation of its mean curvature. We prove that there exists a positive $\varepsilon$, depending on $n$ and upper bounds on the area and the $C^2$-regularity of $S$, such that if $osc(H) \leq \varepsilon$ then there exist two concentric balls $B_{r_i}$ and $B_{r_e}$ such that $S \subset \overline{B}_{r_e} \setminus B_{r_i}$ and $r_e -r_i \leq C \, osc(H)$, with $C$ depending only on $n$ and upper bounds on the surface area of $S$ and the $C^2$ regularity of $S$. Our approach is based on a…

Mathematics - Differential GeometrySoap bubbleMean curvatureOscillationApplied MathematicsGeneral Mathematics010102 general mathematicsConcentricSurface (topology)53C20 53C21 (Primary) 35B50 35B51 (Secondary)01 natural sciencesAlexandrov Soap Bubble Theorem method of moving planes stability mean curvature pinching.CombinatoricsHypersurfaceMathematics - Analysis of PDEsDifferential Geometry (math.DG)Settore MAT/05 - Analisi Matematica0103 physical sciencesFOS: Mathematics010307 mathematical physicsDiffeomorphism0101 mathematicsMathematicsAnalysis of PDEs (math.AP)
researchProduct

Minimal unit vector fields

2002

We compute the first variation of the functional that assigns each unit vector field the volume of its image in the unit tangent bundle. It is shown that critical points are exactly those vector fields that determine a minimal immersion. We also find a necessary and sufficient condition that a vector field, defined in an open manifold, must fulfill to be minimal, and obtain a simpler equivalent condition when the vector field is Killing. The condition is fulfilled, in particular, by the characteristic vector field of a Sasakian manifold and by Hopf vector fields on spheres.

Curl (mathematics)Killing vector fieldsSolenoidal vector fieldVector operatorcritical pointsGeneral Mathematicsminimal vector fieldsMathematical analysis53C4253C20Hopf vector fields53C25Sasakian manifoldsKilling vector fieldUnit vectorFundamental vector fieldMathematics::Differential GeometryVolume of vector fieldsComplex lamellar vector fieldVector potentialMathematicsTohoku Mathematical Journal
researchProduct

On some Riemannian aspects of two and three-body controlled problems

2009

The flow of the Kepler problem (motion of two mutually attracting bodies) is known to be geodesic after the work of Moser [20], extended by Belbruno and Osipov [2, 21]: Trajectories are reparameterizations of minimum length curves for some Riemannian metric. This is not true anymore in the case of the three-body problem, and there are topological obstructions as observed by McCord et al. [19]. The controlled formulations of these two problems are considered so as to model the motion of a spacecraft within the influence of one or two planets. The averaged flow of the (energy minimum) controlled Kepler problem with two controls is shown to remain geodesic. The same holds true in the case of o…

[ MATH.MATH-OC ] Mathematics [math]/Optimization and Control [math.OC]Work (thermodynamics)Geodesic010102 general mathematicsMathematical analysisMotion (geometry)[MATH.MATH-OC] Mathematics [math]/Optimization and Control [math.OC]Optimal control01 natural sciencesOptimal controlsymbols.namesakeFlow (mathematics)Kepler problemCut and conjugate loci0103 physical sciencesMetric (mathematics)symbolsGeodesic flowTwo and three-body problems49K15 53C20 70Q05Gravitational singularity[MATH.MATH-OC]Mathematics [math]/Optimization and Control [math.OC]0101 mathematics010303 astronomy & astrophysicsMathematics
researchProduct