Search results for "53C20"
showing 9 items of 9 documents
Differentiability of the isoperimetric profile and topology of analytic Riemannian manifolds
2012
Abstract We show that smooth isoperimetric profiles are exceptional for real analytic Riemannian manifolds. For instance, under some extra assumptions, this can happen only on topological spheres. To cite this article: R. Grimaldi et al., C. R. Acad. Sci. Paris, Ser. I 347 (2009).
One-parameter family of Clairaut-Liouville metrics
2007
Riemannian metrics with singularities are considered on the $2$-sphere of revolution. The analysis of such singularities is motivated by examples stemming from mechanics and related to projections of higher dimensional (regular) sub-Riemannian distributions. An unfolding of the metrics in the form of an homotopy from the canonical metric on $\SS^2$ is defined which allows to analyze the singular case as a limit of standard Riemannian ones. A bifurcation of the conjugate locus for points on the singularity is finally exhibited.
Bounded geometry, growth and topology
2010
We characterize functions which are growth types of Riemannian manifolds of bounded geometry.
Conjugate and cut loci of a two-sphere of revolution with application to optimal control
2008
Abstract The objective of this article is to present a sharp result to determine when the cut locus for a class of metrics on a two-sphere of revolution is reduced to a single branch. This work is motivated by optimal control problems in space and quantum dynamics and gives global optimal results in orbital transfer and for Lindblad equations in quantum control.
Semianalyticity of isoperimetric profiles
2009
It is shown that, in dimensions $<8$, isoperimetric profiles of compact real analytic Riemannian manifolds are semi-analytic.
Injectivity domain of ellipsoid of revolution. The oblate case.
2010
Study of the convexity of the injectivity domains on an oblate ellipsoid.
A sharp quantitative version of Alexandrov's theorem via the method of moving planes
2015
We prove the following quantitative version of the celebrated Soap Bubble Theorem of Alexandrov. Let $S$ be a $C^2$ closed embedded hypersurface of $\mathbb{R}^{n+1}$, $n\geq1$, and denote by $osc(H)$ the oscillation of its mean curvature. We prove that there exists a positive $\varepsilon$, depending on $n$ and upper bounds on the area and the $C^2$-regularity of $S$, such that if $osc(H) \leq \varepsilon$ then there exist two concentric balls $B_{r_i}$ and $B_{r_e}$ such that $S \subset \overline{B}_{r_e} \setminus B_{r_i}$ and $r_e -r_i \leq C \, osc(H)$, with $C$ depending only on $n$ and upper bounds on the surface area of $S$ and the $C^2$ regularity of $S$. Our approach is based on a…
Minimal unit vector fields
2002
We compute the first variation of the functional that assigns each unit vector field the volume of its image in the unit tangent bundle. It is shown that critical points are exactly those vector fields that determine a minimal immersion. We also find a necessary and sufficient condition that a vector field, defined in an open manifold, must fulfill to be minimal, and obtain a simpler equivalent condition when the vector field is Killing. The condition is fulfilled, in particular, by the characteristic vector field of a Sasakian manifold and by Hopf vector fields on spheres.
On some Riemannian aspects of two and three-body controlled problems
2009
The flow of the Kepler problem (motion of two mutually attracting bodies) is known to be geodesic after the work of Moser [20], extended by Belbruno and Osipov [2, 21]: Trajectories are reparameterizations of minimum length curves for some Riemannian metric. This is not true anymore in the case of the three-body problem, and there are topological obstructions as observed by McCord et al. [19]. The controlled formulations of these two problems are considered so as to model the motion of a spacecraft within the influence of one or two planets. The averaged flow of the (energy minimum) controlled Kepler problem with two controls is shown to remain geodesic. The same holds true in the case of o…