Search results for "58A20"

showing 2 items of 2 documents

Łojasiewicz exponents, the integral closure of ideals and Newton polyhedra

2003

We give an upper estimate for the Łojasiewicz exponent $\ell(J,I)$ of an ideal $J\subseteq A(K^{n})$ with respect to another ideal I in the ring $A(K^{n})$ of germs analytic functions $f$ : $(K^{n},\mathrm{O})\rightarrow K$ , where $K=C$ or $R$ , using Newton polyhedrons. In particular, we give a method to estimate the Łojasiewicz exponent $\alpha_{0}(f)$ of a germ $f\in A(K^{n})$ that can be applied when $f$ is Newton degenerate with respect to its Newton polyhedron.

58A20Ring (mathematics)32S05General MathematicsDegenerate energy levelsClosure (topology)Łojasiewicz exponentsreal analytic functionsCombinatoricsPolyhedronExponentNewton polyhedronsIdeal (ring theory)Analytic functionMathematicsJournal of the Mathematical Society of Japan
researchProduct

The Poincar\'e-Cartan Form in Superfield Theory

2018

An intrinsic description of the Hamilton-Cartan formalism for first-order Berezinian variational problems determined by a submersion of supermanifolds is given. This is achieved by studying the associated higher-order graded variational problem through the Poincar\'e-Cartan form. Noether theorem and examples from superfield theory and supermechanics are also discussed.

Hamiltonian mechanicsHigh Energy Physics - TheoryMathematics - Differential GeometryPhysics and Astronomy (miscellaneous)BerezinianSuperfieldsymbols.namesakeFormalism (philosophy of mathematics)58E30 46S60 58A20 58J70Poincaré conjectureSupermanifoldsymbolsMathematics::Differential GeometryNoether's theoremMathematical PhysicsMathematical physicsMathematics
researchProduct