6533b7d4fe1ef96bd12628d2
RESEARCH PRODUCT
Łojasiewicz exponents, the integral closure of ideals and Newton polyhedra
Carles Bivià-ausinasubject
58A20Ring (mathematics)32S05General MathematicsDegenerate energy levelsClosure (topology)Łojasiewicz exponentsreal analytic functionsCombinatoricsPolyhedronExponentNewton polyhedronsIdeal (ring theory)Analytic functionMathematicsdescription
We give an upper estimate for the Łojasiewicz exponent $\ell(J,I)$ of an ideal $J\subseteq A(K^{n})$ with respect to another ideal I in the ring $A(K^{n})$ of germs analytic functions $f$ : $(K^{n},\mathrm{O})\rightarrow K$ , where $K=C$ or $R$ , using Newton polyhedrons. In particular, we give a method to estimate the Łojasiewicz exponent $\alpha_{0}(f)$ of a germ $f\in A(K^{n})$ that can be applied when $f$ is Newton degenerate with respect to its Newton polyhedron.
year | journal | country | edition | language |
---|---|---|---|---|
2003-07-01 | Journal of the Mathematical Society of Japan |