Łojasiewicz exponents, the integral closure of ideals and Newton polyhedra
We give an upper estimate for the Łojasiewicz exponent $\ell(J,I)$ of an ideal $J\subseteq A(K^{n})$ with respect to another ideal I in the ring $A(K^{n})$ of germs analytic functions $f$ : $(K^{n},\mathrm{O})\rightarrow K$ , where $K=C$ or $R$ , using Newton polyhedrons. In particular, we give a method to estimate the Łojasiewicz exponent $\alpha_{0}(f)$ of a germ $f\in A(K^{n})$ that can be applied when $f$ is Newton degenerate with respect to its Newton polyhedron.
The deformation multiplicity of a map germ with respect to a Boardman symbol
We define the deformation multiplicity of a map germ f: (Cn, 0) → (Cp, 0) with respect to a Boardman symbol i of codimension less than or equal to n and establish a geometrical interpretation of this number in terms of the set of Σi points that appear in a generic deformation of f. Moreover, this number is equal to the algebraic multiplicity of f with respect to i when the corresponding associated ring is Cohen-Macaulay. Finally, we study how algebraic multiplicity behaves with weighted homogeneous map germs.