Search results for "60F05"
showing 10 items of 11 documents
On the empirical spectral distribution for certain models related to sample covariance matrices with different correlations
2021
Given [Formula: see text], we study two classes of large random matrices of the form [Formula: see text] where for every [Formula: see text], [Formula: see text] are iid copies of a random variable [Formula: see text], [Formula: see text], [Formula: see text] are two (not necessarily independent) sets of independent random vectors having different covariance matrices and generating well concentrated bilinear forms. We consider two main asymptotic regimes as [Formula: see text]: a standard one, where [Formula: see text], and a slightly modified one, where [Formula: see text] and [Formula: see text] while [Formula: see text] for some [Formula: see text]. Assuming that vectors [Formula: see t…
Almost sure central limit theorems for random ratios and applications to lse for fractional ornstein–uhlenbeck processes
2012
We investigate an almost sure limit theorem (ASCLT) for sequences of random variables having the form of a ratio of two terms such that the numerator satisfies the ASCLT and the denominator is a positive term which converges almost surely to 1. This result leads to the ASCLT for least square estimators for Ornstein-Uhlenbeck process driven by fractional Brownian motion.
Statistics of transitions for Markov chains with periodic forcing
2013
The influence of a time-periodic forcing on stochastic processes can essentially be emphasized in the large time behaviour of their paths. The statistics of transition in a simple Markov chain model permits to quantify this influence. In particular the first Floquet multiplier of the associated generating function can be explicitly computed and related to the equilibrium probability measure of an associated process in higher dimension. An application to the stochastic resonance is presented.
CENTRAL LIMIT THEOREM FOR KERNEL ESTIMATOR OF INVARIANT DENSITY IN BIFURCATING MARKOV CHAINS MODELS
2021
Bifurcating Markov chains (BMC) are Markov chains indexed by a full binary tree representing the evolution of a trait along a population where each individual has two children. Motivated by the functional estimation of the density of the invariant probability measure which appears as the asymptotic distribution of the trait, we prove the consistence and the Gaussian fluctuations for a kernel estimator of this density based on late generations. In this setting, it is interesting to note that the distinction of the three regimes on the ergodic rate identified in a previous work (for fluctuations of average over large generations) disappears. This result is a first step to go beyond the thresh…
Recursive estimation of the conditional geometric median in Hilbert spaces
2012
International audience; A recursive estimator of the conditional geometric median in Hilbert spaces is studied. It is based on a stochastic gradient algorithm whose aim is to minimize a weighted L1 criterion and is consequently well adapted for robust online estimation. The weights are controlled by a kernel function and an associated bandwidth. Almost sure convergence and L2 rates of convergence are proved under general conditions on the conditional distribution as well as the sequence of descent steps of the algorithm and the sequence of bandwidths. Asymptotic normality is also proved for the averaged version of the algorithm with an optimal rate of convergence. A simulation study confirm…
Uniform convergence and asymptotic confidence bands for model-assisted estimators of the mean of sampled functional data
2013
When the study variable is functional and storage capacities are limited or transmission costs are high, selecting with survey sampling techniques a small fraction of the observations is an interesting alternative to signal compression techniques, particularly when the goal is the estimation of simple quantities such as means or totals. We extend, in this functional framework, model-assisted estimators with linear regression models that can take account of auxiliary variables whose totals over the population are known. We first show, under weak hypotheses on the sampling design and the regularity of the trajectories, that the estimator of the mean function as well as its variance estimator …
A SIMPLE PARTICLE MODEL FOR A SYSTEM OF COUPLED EQUATIONS WITH ABSORBING COLLISION TERM
2011
We study a particle model for a simple system of partial differential equations describing, in dimension $d\geq 2$, a two component mixture where light particles move in a medium of absorbing, fixed obstacles; the system consists in a transport and a reaction equation coupled through pure absorption collision terms. We consider a particle system where the obstacles, of radius $\var$, become inactive at a rate related to the number of light particles travelling in their range of influence at a given time and the light particles are instantaneously absorbed at the first time they meet the physical boundary of an obstacle; elements belonging to the same species do not interact among themselves…
Central limit theorem for bifurcating Markov chains under L 2 -ergodic conditions
2021
Bifurcating Markov chains (BMC) are Markov chains indexed by a full binary tree representing the evolution of a trait along a population where each individual has two children. We provide a central limit theorem for additive functionals of BMC under L 2-ergodic conditions with three different regimes. This completes the pointwise approach developed in a previous work. As application, we study the elementary case of symmetric bifurcating autoregressive process, which justify the non-trivial hypothesis considered on the kernel transition of the BMC. We illustrate in this example the phase transition observed in the fluctuations.
Synchronization and fluctuations for interacting stochastic systems with individual and collective reinforcement
2020
The Pólya urn is the paradigmatic example of a reinforced stochastic process. It leads to a random (non degenerated) time-limit. The Friedman urn is a natural generalization whose a.s. time-limit is not random anymore. In this work, in the stream of previous recent works, we introduce a new family of (finite) systems of reinforced stochastic processes, interacting through an additional collective reinforcement of mean field type. The two reinforcement rules strengths (one componentwise, one collective) are tuned through (possibly) different rates n −γ. In the case the reinforcement rates are like n −1 , these reinforcements are of Pólya or Friedman type as in urn contexts and may thus lead …
CENTRAL LIMIT THEOREM FOR BIFURCATING MARKOV CHAINS
2020
Bifurcating Markov chains (BMC) are Markov chains indexed by a full binary tree representing the evolution of a trait along a population where each individual has two children. We first provide a central limit theorem for general additive functionals of BMC, and prove the existence of three regimes. This corresponds to a competition between the reproducing rate (each individual has two children) and the ergodicity rate for the evolution of the trait. This is in contrast with the work of Guyon (2007), where the considered additive functionals are sums of martingale increments, and only one regime appears. Our first result can be seen as a discrete time version, but with general trait evoluti…