Search results for "60G15"
showing 4 items of 4 documents
Almost sure central limit theorems for random ratios and applications to lse for fractional ornstein–uhlenbeck processes
2012
We investigate an almost sure limit theorem (ASCLT) for sequences of random variables having the form of a ratio of two terms such that the numerator satisfies the ASCLT and the denominator is a positive term which converges almost surely to 1. This result leads to the ASCLT for least square estimators for Ornstein-Uhlenbeck process driven by fractional Brownian motion.
Calibrating Expert Assessments Using Hierarchical Gaussian Process Models
2020
Expert assessments are routinely used to inform management and other decision making. However, often these assessments contain considerable biases and uncertainties for which reason they should be calibrated if possible. Moreover, coherently combining multiple expert assessments into one estimate poses a long-standing problem in statistics since modeling expert knowledge is often difficult. Here, we present a hierarchical Bayesian model for expert calibration in a task of estimating a continuous univariate parameter. The model allows experts' biases to vary as a function of the true value of the parameter and according to the expert's background. We follow the fully Bayesian approach (the s…
Malliavin Calculus and Skorohod Integration for Quantum Stochastic Processes
2000
A derivation operator and a divergence operator are defined on the algebra of bounded operators on the symmetric Fock space over the complexification of a real Hilbert space $\eufrak{h}$ and it is shown that they satisfy similar properties as the derivation and divergence operator on the Wiener space over $\eufrak{h}$. The derivation operator is then used to give sufficient conditions for the existence of smooth Wigner densities for pairs of operators satisfying the canonical commutation relations. For $\eufrak{h}=L^2(\mathbb{R}_+)$, the divergence operator is shown to coincide with the Hudson-Parthasarathy quantum stochastic integral for adapted integrable processes and with the non-causal…
PARAMETER ESTIMATION FOR FRACTIONAL ORNSTEIN-UHLENBECK PROCESSES: NON-ERGODIC CASE
2011
We consider the parameter estimation problem for the non-ergodic fractional Ornstein-Uhlenbeck process defined as $dX_t=\theta X_tdt+dB_t,\ t\geq0$, with a parameter $\theta>0$, where $B$ is a fractional Brownian motion of Hurst index $H\in(1/2,1)$. We study the consistency and the asymptotic distributions of the least squares estimator $\hat{\theta}_t$ of $\theta$ based on the observation $\{X_s,\ s\in[0,t]\}$ as $t\rightarrow\infty$.