Search results for "60G50"

showing 6 items of 6 documents

Collective vs. individual behaviour for sums of i.i.d. random variables: appearance of the one-big-jump phenomenon

2023

This article studies large and local large deviations for sums of i.i.d. real-valued random variables in the domain of attraction of an $\alpha$-stable law, $\alpha\in (0,2]$, with emphasis on the case $\alpha=2$. There are two different scenarios: either the deviation is realised via a collective behaviour with all summands contributing to the deviation (a Gaussian scenario), or a single summand is atypically large and contributes to the deviation (a one-big-jump scenario). Such results are known when $\alpha \in (0,2)$ (large deviations always follow a one big-jump scenario) or when the random variables admit a moment of order $2+\delta$ for some $\delta>0$. We extend these results, inclu…

60F10 60G50Probability (math.PR)FOS: MathematicsMathematics - Probability
researchProduct

One-dimensional random walks with self-blocking immigration

2017

We consider a system of independent one-dimensional random walkers where new particles are added at the origin at fixed rate whenever there is no older particle present at the origin. A Poisson ansatz leads to a semi-linear lattice heat equation and predicts that starting from the empty configuration the total number of particles grows as $c \sqrt{t} \log t$. We confirm this prediction and also describe the asymptotic macroscopic profile of the particle configuration.

Statistics and Probability60G50Particle numbervacant timeInteracting random walksPoisson distributionPoisson comparison01 natural sciences010104 statistics & probabilitysymbols.namesakeLattice (order)FOS: Mathematicsdensity-dependent immigrationStatistical physics0101 mathematicsAnsatzMathematics010102 general mathematicsProbability (math.PR)Random walk60K35symbolsHeat equationStatistics Probability and Uncertainty60F99Mathematics - Probability
researchProduct

Time-dependent weak rate of convergence for functions of generalized bounded variation

2016

Let $W$ denote the Brownian motion. For any exponentially bounded Borel function $g$ the function $u$ defined by $u(t,x)= \mathbb{E}[g(x{+}\sigma W_{T-t})]$ is the stochastic solution of the backward heat equation with terminal condition $g$. Let $u^n(t,x)$ denote the corresponding approximation generated by a simple symmetric random walk with time steps $2T/n$ and space steps $\pm \sigma \sqrt{T/n}$ where $\sigma > 0$. For quite irregular terminal conditions $g$ (bounded variation on compact intervals, locally H\"older continuous) the rate of convergence of $u^n(t,x)$ to $u(t,x)$ is considered, and also the behavior of the error $u^n(t,x)-u(t,x)$ as $t$ tends to $T$

Statistics and ProbabilityApproximation using simple random walkweak rate of convergence01 natural sciencesStochastic solution41A25 65M15 (Primary) 35K05 60G50 (Secondary)010104 statistics & probabilityExponential growthFOS: Mathematics0101 mathematicsBrownian motionstokastiset prosessitMathematicsosittaisdifferentiaaliyhtälötApplied MathematicsProbability (math.PR)010102 general mathematicsMathematical analysisfinite difference approximation of the heat equationFunction (mathematics)Rate of convergenceBounded functionBounded variationnumeerinen analyysiapproksimointiStatistics Probability and UncertaintyMathematics - ProbabilityStochastic Analysis and Applications
researchProduct

Mean square rate of convergence for random walk approximation of forward-backward SDEs

2020

AbstractLet (Y,Z) denote the solution to a forward-backward stochastic differential equation (FBSDE). If one constructs a random walk$B^n$from the underlying Brownian motionBby Skorokhod embedding, one can show$L_2$-convergence of the corresponding solutions$(Y^n,Z^n)$to$(Y, Z).$We estimate the rate of convergence based on smoothness properties, especially for a terminal condition function in$C^{2,\alpha}$. The proof relies on an approximative representation of$Z^n$and uses the concept of discretized Malliavin calculus. Moreover, we use growth and smoothness properties of the partial differential equation associated to the FBSDE, as well as of the finite difference equations associated to t…

Statistics and ProbabilityDiscretizationapproximation schemeMalliavin calculus01 natural sciences010104 statistics & probabilityconvergence rateMathematics::ProbabilityConvergence (routing)random walk approximation 2010 Mathematics Subject Classification: Primary 60H10FOS: MathematicsApplied mathematics0101 mathematicsBrownian motionrandom walk approximationMathematicsstokastiset prosessitSmoothness (probability theory)konvergenssiApplied Mathematics010102 general mathematicsProbability (math.PR)Backward stochastic differential equationsFunction (mathematics)Random walkfinite difference equation[MATH.MATH-PR]Mathematics [math]/Probability [math.PR]Rate of convergencebackward stochastic differential equations60G50 Secondary 60H3060H35approksimointidifferentiaaliyhtälötMathematics - Probability
researchProduct

Uniform measure density condition and game regularity for tug-of-war games

2018

We show that a uniform measure density condition implies game regularity for all 2 < p < ∞ in a stochastic game called “tug-of-war with noise”. The proof utilizes suitable choices of strategies combined with estimates for the associated stopping times and density estimates for the sum of independent and identically distributed random vectors. peerReviewed

Statistics and ProbabilityIndependent and identically distributed random variablesComputer Science::Computer Science and Game Theorygame regularitydensity estimate for the sum of i.i.d. random vectorsTug of war01 natural sciencesMeasure (mathematics)$p$-regularityMathematics - Analysis of PDEsFOS: MathematicsApplied mathematicspeliteoriastochastic games0101 mathematics91A15 60G50 35J92Mathematicsp-harmonic functionsstokastiset prosessit$p$-harmonic functionsosittaisdifferentiaaliyhtälöthitting probability010102 general mathematicsStochastic gametug-of-war gamesProbability (math.PR)uniform measure density condition010101 applied mathematicsNoiseuniform distribution in a ballMathematics - ProbabilityAnalysis of PDEs (math.AP)
researchProduct

Random walk approximation of BSDEs with H{\"o}lder continuous terminal condition

2018

In this paper, we consider the random walk approximation of the solution of a Markovian BSDE whose terminal condition is a locally Hölder continuous function of the Brownian motion. We state the rate of the L2-convergence of the approximated solution to the true one. The proof relies in part on growth and smoothness properties of the solution u of the associated PDE. Here we improve existing results by showing some properties of the second derivative of u in space. peerReviewed

Statistics and Probabilitynumerical schemeHölder conditionSpace (mathematics)01 natural sciences010104 statistics & probabilityMathematics::Probability0101 mathematicsBrownian motionrandom walk approximationSecond derivativeMathematicsstokastiset prosessitSmoothness (probability theory)numeeriset menetelmät010102 general mathematicsMathematical analysisSpeed of convergenceBackward stochastic differential equationsFunction (mathematics)State (functional analysis)Random walk[MATH.MATH-PR]Mathematics [math]/Probability [math.PR]random walk approxi-mationbackward stochastic differential equationsspeed of convergencespeed of convergence MSC codes : 65C30 60H35 60G50 65G99Mathematics - Probability
researchProduct