Search results for "60H05"
showing 5 items of 5 documents
Almost sure central limit theorems for random ratios and applications to lse for fractional ornstein–uhlenbeck processes
2012
We investigate an almost sure limit theorem (ASCLT) for sequences of random variables having the form of a ratio of two terms such that the numerator satisfies the ASCLT and the denominator is a positive term which converges almost surely to 1. This result leads to the ASCLT for least square estimators for Ornstein-Uhlenbeck process driven by fractional Brownian motion.
Non-autonomous rough semilinear PDEs and the multiplicative Sewing Lemma
2021
We investigate existence, uniqueness and regularity for local solutions of rough parabolic equations with subcritical noise of the form $du_t- L_tu_tdt= N(u_t)dt + \sum_{i = 1}^dF_i(u_t)d\mathbf X^i_t$ where $(L_t)_{t\in[0,T]}$ is a time-dependent family of unbounded operators acting on some scale of Banach spaces, while $\mathbf X\equiv(X,\mathbb X)$ is a two-step (non-necessarily geometric) rough path of H\"older regularity $\gamma >1/3.$ Besides dealing with non-autonomous evolution equations, our results also allow for unbounded operations in the noise term (up to some critical loss of regularity depending on that of the rough path $\mathbf X$). As a technical tool, we introduce a versi…
Rough nonlocal diffusions
2019
We consider a nonlinear Fokker-Planck equation driven by a deterministic rough path which describes the conditional probability of a McKean-Vlasov diffusion with "common" noise. To study the equation we build a self-contained framework of non-linear rough integration theory which we use to study McKean-Vlasov equations perturbed by rough paths. We construct an appropriate notion of solution of the corresponding Fokker-Planck equation and prove well-posedness.
On decoupling in Banach spaces
2021
AbstractWe consider decoupling inequalities for random variables taking values in a Banach space X. We restrict the class of distributions that appear as conditional distributions while decoupling and show that each adapted process can be approximated by a Haar-type expansion in which only the pre-specified conditional distributions appear. Moreover, we show that in our framework a progressive enlargement of the underlying filtration does not affect the decoupling properties (in particular, it does not affect the constants involved). As a special case, we deal with one-sided moment inequalities for decoupled dyadic (i.e., Paley–Walsh) martingales and show that Burkholder–Davis–Gundy-type in…
Rough linear PDE's with discontinuous coefficients - existence of solutions via regularization by fractional Brownian motion
2020
We consider two related linear PDE's perturbed by a fractional Brownian motion. We allow the drift to be discontinuous, in which case the corresponding deterministic equation is ill-posed. However, the noise will be shown to have a regularizing effect on the equations in the sense that we can prove existence of solutions for almost all paths of the fractional Brownian motion.