Search results for "62.50."

showing 4 items of 4 documents

GaS and InSe equations of state from single crystal diffraction

2007

We have performed single crystal angle dispersive X-ray diffraction at high pressure in order to investigate the GaS and InSe equations of state. We situate the transition from β-GaS to GaS-II at 2 7 0 3. ± . GPa. In the InSe experiment we locate the beginning of the phase transition at 7.6 ± 0.6 GPa. The equations of state of β-GaS ( 0 43 27 0 06V = . ± . Å 3 , 37 2 GPaB = ± , 5 2B = .¢ ), GaS-II ( 0 42 4 0 2V = . ± . Å 3 , 50 3 GPaB = ± and 4 3 0 3B = . ± .¢ ) and γ-InSe ( 0 58 4 0 2V = . ± . Å 3 , 24 3 GPaB = ± and 8 6 0 8B = . ± .¢ ) are discussed and compared with the results of an ab-initio calculation.

DiffractionPhase transitionChemistryScattering02 engineering and technology021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciencesSingle Crystal DiffractionElectronic Optical and Magnetic MaterialsCrystallographyAb initio quantum chemistry methodsHigh pressure[PHYS.COND.CM-GEN]Physics [physics]/Condensed Matter [cond-mat]/Other [cond-mat.other]0103 physical sciencesX-ray crystallographyPACS : 61.10.Nz 61.82.Fk 62.50.+p 64.30.+t010306 general physics0210 nano-technologySingle crystal
researchProduct

Microscopic evidence of a flat melting curve of tantalum

2010

International audience; New data on the high-pressure melting curve of Ta up to 48GPa are reported. Evidence of melting from changes in sample texture was found in five different experiments using scanning electron microscopy. The obtained melting temperatures are in excellent agreement with earlier measurements using x-ray diffraction or the laser-speckled method but are in contrast with several theoretical calculations. The results are also compared with shock-wave data. These findings are of geophysical relevance because they confirm the validity of earlier experimental techniques that resulted in low melting slopes of the transition metals measured in the diamond-anvil cell, including i…

Diffractionlaser-heatingMaterials sciencehigh-pressurePhysics and Astronomy (miscellaneous)Scanning electron microscope62.50.-p64.70.djTantalumAnalytical chemistrychemistry.chemical_element02 engineering and technology01 natural sciencesdiamond-anvil cellDiamond anvil cellMelting curve analysistransition metalsTransition metal0103 physical sciencesTexture (crystalline)010306 general physics62.50.EfAstronomy and Astrophysics021001 nanoscience & nanotechnologyCrystallographyGeophysicsmelting curvechemistrySpace and Planetary Science0210 nano-technologyMelting-point depression
researchProduct

Complex high-pressure polymorphism of barium tungstate

2012

We have studied BaWO 4 under compression at room temperature by means of x-ray diffraction and Raman spectroscopy. When compressed with neon as a pressure-transmitting medium (quasihydrostatic conditions), we found that BaWO 4 transforms from its low-pressure tetragonal structure into a much denser monoclinic structure. This result confirms our previous theoretical prediction based on ab initio calculations that the scheelite to BaWO 4-II transition occurs at room temperature if kinetic barriers are suppressed by pressure. However, our experiment without any pressure- transmitting medium has resulted in a phase transition to a completely different structure, suggesting nonhydrostaticity may…

Phase transitionMaterials science02 engineering and technologyCrystal structureBawo47. Clean energy01 natural sciencesX-rayTetragonal crystal systemsymbols.namesakeAb initio quantum chemistry methods0103 physical sciencesCrystal010306 general physicsCaoo4Refinement021001 nanoscience & nanotechnologyCondensed Matter PhysicsElectronic Optical and Magnetic MaterialsCrystallographyFISICA APLICADA[PHYS.COND.CM-GEN]Physics [physics]/Condensed Matter [cond-mat]/Other [cond-mat.other]X-ray crystallographyTransitionsymbolsPACS: 62.50.−p 61.50.Ks 61.05.cp 63.20.ddCell0210 nano-technologyRaman spectroscopyPowder diffractionPowder DiffractionMonoclinic crystal system
researchProduct

High-pressure electronic structure and phase transitions in monoclinic InSe: X-ray diffraction, Raman spectroscopy, and density functional theory

2008

We have studied the crystal and electronic structure of monoclinic (MC) InSe under pressure finding a reversible phase transition to a ${\mathrm{Hg}}_{2}{\mathrm{Cl}}_{2}$-like tetragonal phase. The pressure evolution of the crystal structure was investigated by angle-dispersive x-ray diffraction and Raman spectroscopy in a diamond-anvil cell up to $30\phantom{\rule{0.3em}{0ex}}\mathrm{GPa}$. From the diffraction experiments, we deduced that MC InSe becomes gradually more symmetric under pressure, transforming the crystal structure into a tetragonal one at $19.4\ifmmode\pm\else\textpm\fi{}0.5\phantom{\rule{0.3em}{0ex}}\mathrm{GPa}$. This phase transition occurs without any volume change. Ra…

Phase transitionMaterials sciencebusiness.industry02 engineering and technologyCrystal structure021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciencesPressure coefficientElectronic Optical and Magnetic MaterialsTetragonal crystal systemCrystallographysymbols.namesakeOptics[PHYS.COND.CM-GEN]Physics [physics]/Condensed Matter [cond-mat]/Other [cond-mat.other]Phase (matter)0103 physical sciencesX-ray crystallographysymbols62.50.010306 general physics0210 nano-technologybusinessRaman spectroscopyMonoclinic crystal systemPhysical Review B
researchProduct