6533b837fe1ef96bd12a31d3
RESEARCH PRODUCT
GaS and InSe equations of state from single crystal diffraction
Alfredo SeguraA. ChevyJulio Pellicer-porresEnric CanadellS. GillilandPablo OrdejónEduardo Machado-charryAlain PolianP. MunschN. Guignotsubject
DiffractionPhase transitionChemistryScattering02 engineering and technology021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciencesSingle Crystal DiffractionElectronic Optical and Magnetic MaterialsCrystallographyAb initio quantum chemistry methodsHigh pressure[PHYS.COND.CM-GEN]Physics [physics]/Condensed Matter [cond-mat]/Other [cond-mat.other]0103 physical sciencesX-ray crystallographyPACS : 61.10.Nz 61.82.Fk 62.50.+p 64.30.+t010306 general physics0210 nano-technologySingle crystaldescription
We have performed single crystal angle dispersive X-ray diffraction at high pressure in order to investigate the GaS and InSe equations of state. We situate the transition from β-GaS to GaS-II at 2 7 0 3. ± . GPa. In the InSe experiment we locate the beginning of the phase transition at 7.6 ± 0.6 GPa. The equations of state of β-GaS ( 0 43 27 0 06V = . ± . Å 3 , 37 2 GPaB = ± , 5 2B = .¢ ), GaS-II ( 0 42 4 0 2V = . ± . Å 3 , 50 3 GPaB = ± and 4 3 0 3B = . ± .¢ ) and γ-InSe ( 0 58 4 0 2V = . ± . Å 3 , 24 3 GPaB = ± and 8 6 0 8B = . ± .¢ ) are discussed and compared with the results of an ab-initio calculation.
year | journal | country | edition | language |
---|---|---|---|---|
2007-01-01 |