0000000000012662
AUTHOR
Alain Polian
Experimental and theoretical investigation of the stability of the monoclinicBaWO4-II phase at high pressure and high temperature
In this work we report high-pressure (HP) and high-temperature (HT) ex situ and in situ experiments in ${\text{BaWO}}_{4}$. Starting from powder samples of ${\text{BaWO}}_{4}$, scheelite structure $(I{4}_{1}/a)$, we reached conditions of 2.5--5.5 GPa and 400--1100 K using a Paris-Edinburgh press. The quenched samples were characterized by x-ray diffraction and Raman measurements at ambient conditions. Depending upon the final $P\text{\ensuremath{-}}T$ conditions we found either the scheelite or the monoclinic ${\text{BaWO}}_{4}$-II $(P{2}_{1}/n)$ structure. We also performed HP-HT in situ Raman measurements in a single crystal of ${\text{BaWO}}_{4}$ using a resistive-heated diamond-anvil ce…
Single crystal EXAFS at high pressure
Abstract We present a new technique for structure characterization under high pressure conditions. The use of an undulator beam of the third-generation ESRF source of synchrotron radiation has enabled the first single crystal EXAFS experiments at high pressure using a diamond anvil cell as pressure generator. Taking advantage of the linear polarization of X-rays the technique becomes an orientation-selective probe of the local structure of materials. We describe the principle of the technique and some applications.
Sixfold coordinated phosphorus by oxygen in AlPO4 quartz homeotype under high pressure.
International audience; AlPO4 belongs to the berlinite quartz homeotype family, which has been the subject of intense high pressure research triggered by the supposed existence of reversible pressure induced amorphization. New x-ray diffraction experiments, complemented with ab initio calculations, demonstrate the existence of two high pressure crystalline polymorphs and show that AlPO4 share the same two stage densification mechanism as silica. In first place a compact hexagonal sublattice of oxygen atoms is formed. In a second step the cations redistribute in the interstices giving rise to a monoclinic distorted CaCl2 phase. The most outstanding feature of the new phase is that phosphorou…
A study of KNbO3in the pressure range to 12 GPa using synchrotron radiation
Abstract Orthorhombic KNbO3 has been studied by x-ray diffraction as a function of pressure. The lattice cell parameters, volume and stability range of this phase have been determined as a function of the applied pressure. No structural transformation has been observed up to 12 GPa. The resulting P-V data are fitted to a Murnaghan equation state of first-order.
Observation of the Cinnabar Phase in ZnSe at High Pressure
In this paper we describe the results of an energy dispersive X-ray diffraction experiment carried out in the ZnSe 1 m x Te x alloy and pure ZnSe under high pressure. In the downstroke the cinnabar phase is observed between the rocksalt and the zincblende phases. The analysis of the whole series of compositions ( x =0, 0.05, 0.1 and 0.2) enables us to establish its lattice parameters in ZnSe ( a =3.785 + and c =8.844 + at 10.5 GPa). The X-ray diffraction pattern simulation suggests that the internal parameters u and v are close to 0.5, indicating that the cinnabar phase in ZnSe is similar to that observed in GaAs and ZnTe. The cinnabar's stability range decreases as the Te content is reduce…
Tetrahedral versus octahedral Mn site coordination in wurtzite and rocksalt Zn1−xMnxO investigated by means of XAS experiments under high pressure
Abstract We present the results of x-ray absorption measurements carried out in Zn 1− x Mn x O thin films under high pressure. The Mn environment remains essentially the same for nominal Mn concentrations given by x = 0.05 , 0.1, 0.15 and 0.25. Both the XANES (X-ray Absorption Near Edge Structure) and EXAFS (Extended X-ray Absorption Fine Structure) indicate that Mn occupies the Zn site, being surrounded by four oxygen atoms at 2.02±0.01 A. The substitutional hypothesis is reinforced by comparing the differences between the ambient (wurtzite) and high pressure (rocksalt) spectra, which correspond to tetrahedral and octahedral Mn environments.
In-situ high-pressure Raman scattering studies in PbWO4 up to 48 GPa
The effect of pressure on the Raman spectrum of PbWO4 has been investigated up to 48 GPa in a diamond-anvil cell using neon as pressure-transmitting medium. Changes are detected in the Raman spectrum at 6.8 GPa as a consequence of a structural phase transition from the tetragonal scheelite structure to the monoclinic PbWO4-III structure. Two additional phase transitions are detected at 15.5 and 21.2 GPa to the previously unknown crystalline phases IV and V. The last one remains stable up to 43.3 GPa. At 47.7 GPa all Raman modes disappear, which could be caused by a pressure-induced amorphization. All structural changes are reversible, being the scheelite phase recovered at ambient pressure.…
High-pressure x-ray-absorption study of GaSe
The III-VI layered semiconductor InSe has been studied by high-pressure single crystal x-ray absorption spectroscopy up to a maximum pressure of 14 GPa. The In-Se distance has been measured in both the low- pressure layered phase and the high-pressure NaCl phase. The bond compressibility in the layered phase is lower than the ``a'' crystallographic parameter compressibility, which implies an increase of the angle between the In-Se bond and the layer plane. Under plausible hypothesis, a description of the evolution of the whole structure with pressure is given. In particular, the intralayer distance is observed to increase with increasing pressure. A plausible precursor defect and a simple m…
Recent progress in high pressure X-ray absorption spectroscopy studies at the ODE beamline
I.J. and A.K. are grateful to the Latvian Council of Science project no. lzp-2018/2-0353 for financial support. The research leading to these results has been partially supported by the project CALIPSOplus under the Grant Agreement No. 730872 from the EU Framework Programme for Research and Innovation HORIZON 2020.
Cinnabar phase in ZnSe at high pressure
We have performed an energy-dispersive x-ray-diffraction experiment on ${\mathrm{ZnSe}}_{1\ensuremath{-}x}{\mathrm{Te}}_{x}$ alloys under high pressure with $x=0,$ 0.05, 0.1, and 0.2. In the downstroke a hexagonal phase appears. We suggest that this phase is cinnabar, whose stability range decreases as the Te content is reduced. The analysis of the whole series of compositions enables us to establish its lattice parameters in ZnSe $(a=3.785\AA{}$ and $c=8.844\AA{}$ at 10.5 GPa). The extinction of some diffraction peaks also suggests that the internal parameters u and $v$ are close to 0.5, indicating that the cinnabar phase in ZnSe is similar to that observed in GaAs and ZnTe.
High-pressure study of the infrared active modes in wurtzite and rocksalt ZnO
International audience; We present a high-pressure study of ZnO carried out in the mid- to far-infrared frequency domain with the aim of characterizing the optic modes of wurtzite and rocksalt ZnO. We obtained the pressure coefficients of the E1(TO), E1(LO), A1(TO), and A1(LO) modes of the low-pressure wurtzite phase and compare them with previous Raman measurements. The optical modes of the high-pressure rocksalt phase are infrared active, so we were able to determine their wave numbers and pressure dependencies. In the wurtzite phase, high pressure induces a slight decrease in both longitudinal and transverse effective charges. The decrease is more pronounced in the rocksalt phase.
XRD and XAS structural study of CuAlO2under high pressure
International audience; We present the results of x-ray diffraction and x-ray absorption spectroscopy experiments in CuAlO2 under high pressure. We discuss the polarization dependence of the x-ray absorption near-edge structure at the Cu K-edge. XRD under high pressure evidences anisotropic compression, the a-axis being more compressible than the c-axis. EXAFS yields the copper-oxygen bond length, from which the only internal parameter of the delafossite structure is deduced. The combination of anisotropic compression and the internal parameter decrease results in a regularization of the AlO6 octahedra. The anisotropic compression is related to the chemical trends observed in the lattice pa…
Polymorphism in Strontium Tungstate SrWO 4 under Quasi-Hydrostatic Compression
The structural and vibrational properties of SrWO4 have been studied experimentally up to 27 and 46 GPa, respectively, by angle-dispersive synchrotron X-ray diffraction and Raman spectroscopy measurements as well as using ab initio calculations. The existence of four polymorphs upon quasi-hydrostatic compression is reported. The three phase transitions were found at 11.5, 19.0, and 39.5 GPa. The ambient-pressure SrWO4 tetragonal scheelite-type structure (S.G. I41/a) undergoes a transition to a monoclinic fergusonite-type structure (S.G. I2/a) at 11.5 GPa with a 1.5% volume decrease. Subsequently, at 19.0 GPa, another structural transformation takes place. Our calculations indicate two possi…
Structural evolution of theCuGaO2delafossite under high pressure
We have performed pseudopotential calculations and x-ray-diffraction and x-ray-absorption measurements on the ${\mathrm{CuGaO}}_{2}$ delafossite under high pressure. We have completely characterized the structural behavior of the low pressure phase. We have found out that the a axis is more compressible than the c axis, and as a consequence the oxygen octahedra defined by the gallium environment tend to become more regular under high pressure. We have determined the internal parameter describing the oxygen position inside the unit cell, and seen that it is nearly constant when pressure is applied. We have observed an irreversible phase transition affecting the copper environment but not the…
Phase transitions in wolframite-typeCdWO4at high pressure studied by Raman spectroscopy and density-functional theory
Room-temperature Raman scattering was measured in ${\text{CdWO}}_{4}$ up to 43 GPa. We report the pressure dependence of all the Raman-active phonons of the low-pressure wolframite phase. As pressure increases changes in the Raman spectra are detected at 20 and 35 GPa due to the onset of reversible structural phase transitions. We also report ab initio total-energy and lattice-dynamics calculations for the different phases of ${\text{CdWO}}_{4}$. They helped us determine the crystalline structure of the high-pressure phases. Experimental and theoretical results suggest the coexistence of two structures from 20 to 35 GPa: one with tetragonal symmetry and another with triclinic symmetry. Beyo…
GaS and InSe equations of state from single crystal diffraction
We have performed single crystal angle dispersive X-ray diffraction at high pressure in order to investigate the GaS and InSe equations of state. We situate the transition from β-GaS to GaS-II at 2 7 0 3. ± . GPa. In the InSe experiment we locate the beginning of the phase transition at 7.6 ± 0.6 GPa. The equations of state of β-GaS ( 0 43 27 0 06V = . ± . Å 3 , 37 2 GPaB = ± , 5 2B = .¢ ), GaS-II ( 0 42 4 0 2V = . ± . Å 3 , 50 3 GPaB = ± and 4 3 0 3B = . ± .¢ ) and γ-InSe ( 0 58 4 0 2V = . ± . Å 3 , 24 3 GPaB = ± and 8 6 0 8B = . ± .¢ ) are discussed and compared with the results of an ab-initio calculation.
Vibrational properties of delafossiteCuGaO2at ambient and high pressures
In this paper we investigate the vibrational properties of $\mathrm{Cu}\mathrm{Ga}{\mathrm{O}}_{2}$ delafossite by means of Raman experiments and ab initio calculations. Both investigations have been performed at ambient pressure and also at high pressure. The two Raman-active modes have frequencies ${w}_{{E}_{g}}=368\ifmmode\pm\else\textpm\fi{}1\phantom{\rule{0.3em}{0ex}}{\mathrm{cm}}^{\ensuremath{-}1}$ and ${w}_{{A}_{1g}}=729\ifmmode\pm\else\textpm\fi{}1\phantom{\rule{0.3em}{0ex}}{\mathrm{cm}}^{\ensuremath{-}1}$, and pressure coefficients $2.78\ifmmode\pm\else\textpm\fi{}0.03\phantom{\rule{0.3em}{0ex}}{\mathrm{cm}}^{\ensuremath{-}1}∕\mathrm{GPa}$ $({E}_{g})$ and $4.64\ifmmode\pm\else\text…
Bond length compressibility in hard ReB2 investigated by x-ray absorption under high pressure
International audience; This work describes x-ray absorption measurements under high pressure in ReB2 , complemented by ab initio calculations. The EXAFS analysis yields the average Re–B bond compressibility, which turns out to be χReB = 5.6(9) × 10− 4 GPa−1 . Combining this information with previous x-ray diffraction experiments we have characterized the network of covalent bonds responsible for the rigidity of the structure. The main conclusion is that the compression is anisotropic and nonhomogeneous, reflecting bonding differences between Re–B and B–B bonds and also between nonequivalent Re–B bonds. The layer defined by boron atoms tends to become flatter under high pressure. As a conse…
Structure Solution of the High-Pressure Phase of CuWO4 and Evolution of the Jahn–Teller Distortion
In this work, we have investigated the structural behavior of cuproscheelite up to 33.9 GPa by means of high-pressure single-crystal X-ray diffraction (SXRD) and extended X-ray absorption fine structure (EXAFS). According to EXAFS, beyond 9 GPa a phase transition takes place. On the basis of SXRD, the transition is from the triclinic (P1) structure to a monoclinic (P2/c) structure isotypic to wolframite. The transition implies abrupt changes of CuO6 and WO6 octahedra, but no coordination change. Further, we report the role played by the Jahn–Teller distortion of the CuO6 octahedra on the mechanism of the phase transition as well as the changes in the behavior of the Cu–O bonds for the tricl…
High-Pressure Raman Scattering of CaWO4 Up to 46.3 GPa: Evidence of a New High-Pressure Phase
International audience; The high-pressure behavior of CaWO4 wasanalyzed at room temperature by Raman spectroscopy.Pressure was generated using a diamond-anvil cell and Ne aspressure-transmitting medium. The pressure range of previousstudies has been extended from 23.4 to 46.3 GPa. Theexperiments reveal the existence of two reversible phasetransitions. The first one occurs from the tetragonal scheelitestructure to the monoclinic fergusonite structure and isobserved at 10 GPa. The onset of a previously unknownsecond transition is found at 33.4 GPa. The two high-pressurephases coexist up to 39.4 GPa. The Raman spectra measuredfor the low-pressure phase and the first high-pressure phase arecons…
Local disorder studied inSrTiO3at low temperature by EXAFS spectroscopy
The temperature dependence of the local distortions in ${\mathrm{SrTiO}}_{3}$ has been studied by EXAFS spectroscopy at the titanium K edge (4982 eV). The oxygen-ion Debye-Waller factor ${\mathrm{\ensuremath{\sigma}}}_{0}^{2}$ has been determined from 4.5 to 240 K. The antiferrodistortive transition at 105 K is evidenced by a step in this Debye-Waller factor. At about 31 K, a maximum of ${\mathrm{\ensuremath{\sigma}}}_{0}^{2}$ is detected and the EXAFS oscillations due to the first oxygen shell increase. This is the signature of a maximum disorder in the lattice vibrations in this temperature range. A quasiharmonic model with a sinusoidal modulation of the Ti-O distance cannot account for t…
Complex high-pressure polymorphism of barium tungstate
We have studied BaWO 4 under compression at room temperature by means of x-ray diffraction and Raman spectroscopy. When compressed with neon as a pressure-transmitting medium (quasihydrostatic conditions), we found that BaWO 4 transforms from its low-pressure tetragonal structure into a much denser monoclinic structure. This result confirms our previous theoretical prediction based on ab initio calculations that the scheelite to BaWO 4-II transition occurs at room temperature if kinetic barriers are suppressed by pressure. However, our experiment without any pressure- transmitting medium has resulted in a phase transition to a completely different structure, suggesting nonhydrostaticity may…
X-ray-absorption fine-structure study of ZnSexTe1−x alloys
X-ray-absorption fine-structure experiments at different temperatures in ZnSexTe1−x (x=0, 0.1, 0.2, 0.55, 0.81, 0.93, 0.99, and 1.0) have been performed in order to obtain information about the structural relaxation and disorder effects occurring in the alloys. First and second neighbor distance distributions have been characterized at the Se and Zn K edges, using multiple-edge and multiple-scattering data analysis. The first neighbor distance distribution was found to be bimodal. The static disorder associated with the Zn–Te distance variance did not depend appreciably on composition. On the other hand, the static disorder associated with the Zn–Se distance increased as the Se content dimi…