Search results for "630"

showing 10 items of 109 documents

Dental wear at macro- and microscopic scale in rabbits fed diets of different abrasiveness: A pilot investigation

2020

To differentiate the effects of internal and external abrasives on tooth wear, we performed a controlled feeding experiment in rabbits fed diets of varying phytolith content as an internal abrasive and with addition of sand as an external abrasive. 13 rabbits were each fed one of the following four pelleted diets with different abrasive characteristics (no phytoliths: lucerne L; phytoliths: grass G; more phytoliths: grass and rice hulls GR; phytoliths plus external abrasives: grass, rice hulls and sand GRS) for two weeks. At the end the feeding period, three tooth wear proxies were applied to quantify wear on the cheek teeth at macroscopic and microscopic wear scales: CT scans were obtained…

010506 paleontology10253 Department of Small AnimalsEvolutionDental Wear1904 Earth-Surface Processes010502 geochemistry & geophysicsOceanography01 natural sciencesMesowearAnimal sciencestomatognathic systemBehavior and SystematicsCheek teeth1910 OceanographyPremolarmedicineEcology Evolution Behavior and Systematics0105 earth and related environmental sciencesEarth-Surface Processes2. Zero hunger630 AgricultureEcologyPalaeontologyAbrasivePaleontologyEarthRice hulls1911 Paleontologystomatognathic diseasesmedicine.anatomical_structure1105 Ecology Evolution Behavior and SystematicsSurface ProcessesPhytolithTooth wear570 Life sciences; biologyGeologyPalaeogeography, Palaeoclimatology, Palaeoecology
researchProduct

Controlled feeding experiments with diets of different abrasiveness reveal slow development of mesowear signal in goats ( Capra aegagrus hircus )

2018

ABSTRACT Dental mesowear is applied as a proxy to determine the general diet of mammalian herbivores based on tooth-cusp shape and occlusal relief. Low, blunt cusps are considered typical of grazers and high, sharp cusps typical of browsers. However, how internal or external abrasives impact mesowear, and the time frame the wear signature takes to develop, still need to be explored. Four different pelleted diets of increasing abrasiveness (lucerne, grass, grass and rice husks, and grass, rice husks and sand) were fed to four groups of a total of 28 adult goats in a controlled feeding experiment over a 6-month period. Tooth morphology was captured by medical CT scans at the beginning and end…

0106 biological sciences010506 paleontology10253 Department of Small Animals1109 Insect ScienceEvolutionPhysiologyCapra aegagrusAquatic ScienceGeneral diet010603 evolutionary biology01 natural sciencesMesowearAnimal scienceTime frameBehavior and Systematicsstomatognathic system1312 Molecular BiologyMolecular BiologyEcology Evolution Behavior and Systematics0105 earth and related environmental sciences2. Zero hungerHerbivoreCrania630 Agriculture1104 Aquatic ScienceEcologybiology1314 Physiologybiology.organism_classificationTooth morphology1105 Ecology Evolution Behavior and SystematicsTooth wearInsect Science11404 Department of Clinical Diagnostics and Services570 Life sciences; biologyAnimal Science and Zoology1103 Animal Science and ZoologyThe Journal of Experimental Biology
researchProduct

Within trophic level shifts in collagen-carbonate stable carbon isotope spacing are propagated by diet and digestive physiology in large mammal herbi…

2018

Stable carbon isotope analyses of vertebrate hard tissues such as bones, teeth, and tusks provide information about animal diets in ecological, archeological, and paleontological contexts. There is debate about how carbon isotope compositions of collagen and apatite carbonate differ in terms of their relationship to diet, and to each other. We evaluated relationships between δ13Ccollagen and δ13Ccarbonate among free-ranging southern African mammals to test predictions about the influences of dietary and physiological differences between species. Whereas the slopes of δ13Ccollagen–δ13Ccarbonate relationships among carnivores are ≤1, herbivore δ13Ccollag…

0106 biological sciences0301 basic medicine10253 Department of Small Animalsgrassmedicine.medical_treatmentZoologyBiology010603 evolutionary biology01 natural sciences2309 Nature and Landscape ConservationC3 C403 medical and health scienceschemistry.chemical_compoundLow-protein dietmedicineC3Ecology Evolution Behavior and SystematicsOriginal ResearchC4browseNature and Landscape ConservationTrophic levelHerbivore630 AgricultureEcologyδ13CStable isotope ratiomethane1105 Ecology Evolution Behavior and Systematics030104 developmental biologychemistry13. Climate actionIsotopes of carbon570 Life sciences; biologyCarbonateMammalprotein2303 EcologyEcology and Evolution
researchProduct

Forage silica and water content control dental surface texture in guinea pigs and provide implications for dietary reconstruction.

2019

Significance Ingesta leave characteristic wear features on the tooth surface, which enable us to reconstruct the diet of extant and fossil vertebrates. However, whether dental wear is caused by internal (phytoliths) or external (mineral dust) silicate abrasives is controversially debated in paleoanthropology and biology. To assess this, we fed guinea pigs plant forages of increasing silica content (lucerne < grass < bamboo) without any external abrasives, both in fresh and dried state. Abrasiveness and enamel surface wear increased with higher forage phytolith content. Additionally, water loss altered plant material properties. Dental wear of fresh grass feeding was similar to lucerne brows…

0106 biological sciences10253 Department of Small Animals01 natural sciencesPHYTOLITHSsurface textureGRASSTEETHMICROWEARGrazingphytolithsWater content2. Zero hungerTimothy-grassMultidisciplinarybiologyEnamel paint630 AgricultureEcologymicrotextureTRIBOLOGYfood and beveragesPlantsBiological SciencesSilicon DioxideVARIABILITYPhytolithvisual_artMAMMALSvisual_art.visual_art_mediumFemale010506 paleontologyBambooGuinea PigsForage010603 evolutionary biologyFEEDING ECOLOGYAnimal sciencestomatognathic systemHardnessAnimalsgrazingDental Enamel0105 earth and related environmental sciences1000 MultidisciplinaryBiology and Life SciencesWater15. Life on landbiology.organism_classificationMolarDietTooth AbrasionWEARTooth wearMECHANICStooth wear570 Life sciences; biologyProceedings of the National Academy of Sciences of the United States of America
researchProduct

Shape, size, and quantity of ingested external abrasives influence dental microwear texture formation in guinea pigs

2020

Food processing wears down teeth, thus affecting tooth functionality and evolutionary success. Other than intrinsic silica phytoliths, extrinsic mineral dust/grit adhering to plants causes tooth wear in mammalian herbivores. Dental microwear texture analysis (DMTA) is widely applied to infer diet from microscopic dental wear traces. The relationship between external abrasives and dental microwear texture (DMT) formation remains elusive. Feeding experiments with sheep have shown negligible effects of dust-laden grass and browse, suggesting that intrinsic properties of plants are more important. Here, we explore the effect of clay- to sand-sized mineral abrasives (quartz, volcanic ash, loess,…

0106 biological sciences10253 Department of Small AnimalsGuinea PigsDental WearMineral dustdiet reconstruction010603 evolutionary biology01 natural sciencesTexture (geology)Texture formation010104 statistics & probabilitychemistry.chemical_compoundstomatognathic systemAnimalsHerbivoryParticle Size0101 mathematicsQuartzgrit2. Zero hunger1000 MultidisciplinaryMultidisciplinary630 AgricultureMetallurgyPlantsBiological SciencesAnimal FeedSilicateDietTooth AbrasionchemistryTooth weartooth wear570 Life sciences; biologyParticle sizedustfeeding experimentProceedings of the National Academy of Sciences
researchProduct

Dental microwear texture gradients in guinea pigs reveal that material properties of the diet affect chewing behaviour

2021

ABSTRACT Dental microwear texture analysis (DMTA) is widely used for diet inferences in extant and extinct vertebrates. Often, a reference tooth position is analysed in extant specimens, while isolated teeth are lumped together in fossil datasets. It is therefore important to test whether dental microwear texture (DMT) is tooth position specific and, if so, what causes the differences in wear. Here, we present results from controlled feeding experiments with 72 guinea pigs, which received either fresh or dried natural plant diets of different phytolith content (lucerne, grass, bamboo) or pelleted diets with and without mineral abrasives (frequently encountered by herbivorous mammals in natu…

0106 biological sciencesAbrasion (dental)10253 Department of Small Animals1109 Insect SciencePhysiologyEvolutionGuinea PigsBiologyAquatic Science010603 evolutionary biology01 natural sciences03 medical and health sciencesPosterior ToothAnimal sciencestomatognathic systemBehavior and Systematicsmedicine1312 Molecular BiologyAnimalsMasticationMolecular BiologyEcology Evolution Behavior and SystematicsAnterior teeth030304 developmental biology0303 health sciencesHerbivore630 Agriculture1104 Aquatic ScienceEcology1314 Physiologymedicine.diseaseAnimal FeedDietBite force quotientstomatognathic diseases1105 Ecology Evolution Behavior and SystematicsPhytolithTooth wearInsect ScienceMastication570 Life sciences; biologyAnimal Science and ZoologyTooth Wear1103 Animal Science and ZoologyTooth
researchProduct

Dust and grit matter: abrasives of different size lead to opposing dental microwear textures in experimentally fed sheep (Ovis aries)

2020

ABSTRACT External abrasives ingested along with the herbivore diet are considered main contributors to dental wear, though how the different sizes and concentrations of these abrasives influence wear remains unclear. Dental microwear texture analysis (DMTA) is an established method for dietary reconstruction which describes a tooth9s surface topography on a micrometre scale. The method has yielded conflicting results as to the effect of external abrasives. In the present study, a feeding experiment was performed on sheep (Ovis aries) fed seven diets of different abrasiveness. Our aim was to discern the individual effects of size (4, 50 and 130 µm) and concentration (0%, 4% and 8% of dry mat…

0106 biological sciencesMolar010506 paleontology10253 Department of Small Animals1109 Insect SciencePhysiologyEvolutionRuminantDental WearAquatic Science010603 evolutionary biology01 natural sciencesTexture (geology)MicrotextureAnimal scienceBehavior and Systematics1312 Molecular BiologyAnimalsGritOvisMolecular BiologySheep DomesticEcology Evolution Behavior and Systematics0105 earth and related environmental sciencesFeeding experimentbiology630 Agriculture1104 Aquatic ScienceEcologyChemistryAbrasiveTooth wearDust1314 Physiologybiology.organism_classificationAbrasivesAnimal FeedDiet1105 Ecology Evolution Behavior and SystematicsTooth wearInsect Science570 Life sciences; biologyParticulate MatterAnimal Science and Zoology1103 Animal Science and Zoology
researchProduct

The way wear goes: phytolith-based wear on the dentine–enamel system in guinea pigs (Cavia porcellus)

2019

The effect of phytoliths on tooth wear and function has been contested in studies of animal&ndash;plant interactions. For herbivores whose occlusal chewing surface consists of enamel ridges and dentine tissue, the phytoliths might particularly erode the softer dentine, exposing the enamel ridges to different occlusal forces and thus contributing to enamel wear. To test this hypothesis, we fed guinea pigs (Cavia porcellus; n = 36 in six groups) for threeweeks exclusively on dry or fresh forage of low(lucerne), moderate (fresh timothy grass) or very high (bamboo leaves) silica content representing corresponding levels of phytoliths. We quantified the effect of these treatments with measuremen…

0106 biological sciencesMolar10253 Department of Small AnimalsDentistry01 natural sciences2300 General Environmental ScienceLower body2400 General Immunology and MicrobiologyphytolithsGeneral Environmental Science2. Zero hunger630 AgricultureEcologybiologyEnamel paintOcclusal forcesGeneral Medicinemedicine.anatomical_structurePhytolithvisual_artvisual_art.visual_art_mediumGeneral Agricultural and Biological Sciences010506 paleontologygrowthGuinea PigsCaviaGenetics and Molecular Biology1100 General Agricultural and Biological Sciences010603 evolutionary biologyGeneral Biochemistry Genetics and Molecular Biologystomatognathic systemIncisor1300 General Biochemistry Genetics and Molecular BiologymedicineAnimalsHerbivoryDental Enamel0105 earth and related environmental sciencesGeneral Immunology and Microbiologybusiness.industrybiology.organism_classificationAnimal FeedMolarDietstomatognathic diseasesTooth wearplasticityGeneral BiochemistryDentin570 Life sciences; biologyMasticationTooth Weardental wearbusinessProceedings of the Royal Society B: Biological Sciences
researchProduct

Pseudomonas salomonii sp. nov., pathogenic on garlic, and Pseudomonas palleroniara sp. nov., isolated from rice

2002

International audience; A total of 26 strains, including 15 strains isolated from garlic plants with the typical symptoms of 'Café au lait' disease and 11 strains isolated from diseased or healthy rice seeds and sheaths infested by Pseudomonas fuscovaginae, were compared with 70 type or reference strains of oxidase-positive pathogenic or non-pathogenic fluorescent pseudomonads. The strains were characterized by using a polyphasic taxonomic approach. Numerical taxonomy of phenotypic characteristics showed that the garlic and rice strains were related to each other. However, they clustered into separate phenons, distinct from those of the other strains tested, and were different in several nu…

0106 biological sciences[SDV.SA]Life Sciences [q-bio]/Agricultural sciencesIdentificationADNPhénotype01 natural sciencesphenotypic characteristicsPseudomonas fuscovaginaeRNA Ribosomal 16SPhylogeny2. Zero hungerBase Composition0303 health sciencesbiologyPhylogenetic treeDNA–DNA hybridizationfood and beveragesGeneral MedicinePseudomonas palleronianaRNA BacterialPhenotypehttp://aims.fao.org/aos/agrovoc/c_5435Pseudomonas palleronianaPseudomonas salomoniiAllium sativumhttp://aims.fao.org/aos/agrovoc/c_290DNA Bacterialhttp://aims.fao.org/aos/agrovoc/c_27578Pseudomonas salomoniiPhenotypic characteristicMolecular Sequence DataDNA Ribosomal010603 evolutionary biologyMicrobiologyMicrobiologyNumerical taxonomy03 medical and health sciencesTerminology as TopicPseudomonaspolyphasic taxonomyGarlicGeneEcology Evolution Behavior and SystematicsH20 - Maladies des plantes030304 developmental biologyDNA-DNA hybridizationHybridation moléculaireSettore AGR/12 - Patologia VegetaleOryzaTaxonomie16S ribosomal RNAbiology.organism_classificationhttp://aims.fao.org/aos/agrovoc/c_3791http://aims.fao.org/aos/agrovoc/c_6304http://aims.fao.org/aos/agrovoc/c_5776Genes Bacterialhttp://aims.fao.org/aos/agrovoc/c_2347http://aims.fao.org/aos/agrovoc/c_7631
researchProduct

Fatty Acids of Microbial Origin in the Perirenal Fat of Rats (Rattus norvegicus domestica) and Guinea Pigs (Cavia porcellus) Fed Various Diets.

2020

Guinea pigs are assumed to practice caecotrophy to a higher degree than rats. Studies from leporids suggest that through the practice of caecotrophy, hindgut fermenting species could build up microbial fatty acids (FA) in body tissues. We hypothesized that microbial FA would be detectable in the body tissue of guinea pigs and rats, and this to a higher degree in guinea pigs. Twenty-four rats and guinea pigs were fed with four different pelleted diets (lucerne-, meat-, meat-bone-, insect-based) in groups of six animals for 8 weeks. Perirenal adipose tissue differed in FA composition between the species in spite of the common diets. FA typically associated with microbial activity (saturated F…

0301 basic medicineFA10253 Department of Small Animals1303 BiochemistryRodentGuinea PigsCaviaAdipose tissuePerirenal fatBiochemistryGuinea pig1307 Cell Biology03 medical and health scienceschemistry.chemical_compoundAnimal scienceSpecies SpecificityRuminantbiology.animalCoprophagiaIsoAnimals2. Zero hunger030109 nutrition & dieteticsbiology630 AgricultureCaecotrophyalpha-Linolenic acidMicrobiotaOrganic ChemistryFatty AcidsHindgutCell BiologyRat.biology.organism_classificationGuinea pigAnimal FeedDietRats030104 developmental biologychemistryAdipose TissueDocosahexaenoic acidMicrobial fatty acids570 Life sciences; biology1605 Organic ChemistryLipidsReferences
researchProduct