Search results for "65C05"

showing 10 items of 13 documents

Uncertainty quantification on a spatial Markov-chain model for the progression of skin cancer

2019

AbstractA spatial Markov-chain model is formulated for the progression of skin cancer. The model is based on the division of the computational domain into nodal points, that can be in a binary state: either in ‘cancer state’ or in ‘non-cancer state’. The model assigns probabilities for the non-reversible transition from ‘non-cancer’ state to the ‘cancer state’ that depend on the states of the neighbouring nodes. The likelihood of transition further depends on the life burden intensity of the UV-rays that the skin is exposed to. The probabilistic nature of the process and the uncertainty in the input data is assessed by the use of Monte Carlo simulations. A good fit between experiments on mi…

65C05Skin NeoplasmsComputer scienceQuantitative Biology::Tissues and OrgansMarkovin ketjut0206 medical engineeringMonte Carlo methodPhysics::Medical PhysicsBinary number02 engineering and technologyArticleihosyöpä03 medical and health sciencesMicemedicineAnimalsHumansComputer SimulationStatistical physicsUncertainty quantification60J20stokastiset prosessit030304 developmental biologyProbability0303 health sciencesMarkov chainApplied MathematicsProbabilistic logicUncertaintyState (functional analysis)medicine.disease020601 biomedical engineeringAgricultural and Biological Sciences (miscellaneous)Markov ChainsCardinal pointModeling and Simulation65C40Disease Progressionmatemaattiset mallitSkin cancerMonte Carlo MethodJournal of Mathematical Biology
researchProduct

Simulation of BSDEs with jumps by Wiener Chaos Expansion

2016

International audience; We present an algorithm to solve BSDEs with jumps based on Wiener Chaos Expansion and Picard's iterations. This paper extends the results given in Briand-Labart (2014) to the case of BSDEs with jumps. We get a forward scheme where the conditional expectations are easily computed thanks to chaos decomposition formulas. Concerning the error, we derive explicit bounds with respect to the number of chaos, the discretization time step and the number of Monte Carlo simulations. We also present numerical experiments. We obtain very encouraging results in terms of speed and accuracy.

Statistics and ProbabilityWiener Chaos expansionDiscretizationMonte Carlo methodTime stepConditional expectation01 natural sciences010104 statistics & probabilitybackward stochastic differential equations with jumpsFOS: MathematicsApplied mathematics60H10 60J75 60H35 65C05 65G99 60H070101 mathematicsMathematicsPolynomial chaosApplied MathematicsNumerical analysis010102 general mathematicsMathematical analysista111Probability (math.PR)numerical methodCHAOS (operating system)[MATH.MATH-PR]Mathematics [math]/Probability [math.PR]Modeling and SimulationScheme (mathematics)Mathematics - Probability
researchProduct

From Feynman–Kac formulae to numerical stochastic homogenization in electrical impedance tomography

2016

In this paper, we use the theory of symmetric Dirichlet forms to derive Feynman–Kac formulae for the forward problem of electrical impedance tomography with possibly anisotropic, merely measurable conductivities corresponding to different electrode models on bounded Lipschitz domains. Subsequently, we employ these Feynman–Kac formulae to rigorously justify stochastic homogenization in the case of a stochastic boundary value problem arising from an inverse anomaly detection problem. Motivated by this theoretical result, we prove an estimate for the speed of convergence of the projected mean-square displacement of the underlying process which may serve as the theoretical foundation for the de…

65C05Statistics and Probability65N21stochastic homogenizationquantitative convergence result01 natural sciencesHomogenization (chemistry)78M40general reflecting diffusion process010104 statistics & probabilitysymbols.namesakeFeynman–Kac formula60J4535Q60Applied mathematicsFeynman diagramBoundary value problemSkorohod decomposition0101 mathematicsElectrical impedance tomographyBrownian motionMathematicsrandom conductivity field65N75010102 general mathematicsFeynman–Kac formulaLipschitz continuityBounded functionstochastic forward problemsymbols60J55Statistics Probability and Uncertainty60H30electrical impedance tomographyThe Annals of Applied Probability
researchProduct

On resampling schemes for particle filters with weakly informative observations

2022

We consider particle filters with weakly informative observations (or `potentials') relative to the latent state dynamics. The particular focus of this work is on particle filters to approximate time-discretisations of continuous-time Feynman--Kac path integral models -- a scenario that naturally arises when addressing filtering and smoothing problems in continuous time -- but our findings are indicative about weakly informative settings beyond this context too. We study the performance of different resampling schemes, such as systematic resampling, SSP (Srinivasan sampling process) and stratified resampling, as the time-discretisation becomes finer and also identify their continuous-time l…

FOS: Computer and information sciencesHidden Markov modelparticle filterStatistics and ProbabilityProbability (math.PR)Markovin ketjutStatistics - ComputationMethodology (stat.ME)resamplingFOS: Mathematicsotantanumeerinen analyysiPrimary 65C35 secondary 65C05 65C60 60J25Statistics Probability and UncertaintyFeynman–Kac modeltilastolliset mallitComputation (stat.CO)path integralMathematics - ProbabilityStatistics - Methodologystokastiset prosessit
researchProduct

Establishing some order amongst exact approximations of MCMCs

2016

Exact approximations of Markov chain Monte Carlo (MCMC) algorithms are a general emerging class of sampling algorithms. One of the main ideas behind exact approximations consists of replacing intractable quantities required to run standard MCMC algorithms, such as the target probability density in a Metropolis-Hastings algorithm, with estimators. Perhaps surprisingly, such approximations lead to powerful algorithms which are exact in the sense that they are guaranteed to have correct limiting distributions. In this paper we discover a general framework which allows one to compare, or order, performance measures of two implementations of such algorithms. In particular, we establish an order …

Statistics and ProbabilityFOS: Computer and information sciences65C05Mathematical optimizationMonotonic function01 natural sciencesStatistics - ComputationPseudo-marginal algorithm010104 statistics & probabilitysymbols.namesake60J05martingale couplingalgoritmitFOS: MathematicsApplied mathematics60J220101 mathematicsComputation (stat.CO)Mathematics65C40 (Primary) 60J05 65C05 (Secondary)Martingale couplingMarkov chainmatematiikkapseudo-marginal algorithm010102 general mathematicsProbability (math.PR)EstimatorMarkov chain Monte Carloconvex orderDelta methodMarkov chain Monte CarloOrder conditionsymbolsStatistics Probability and UncertaintyAsymptotic variance60E15Martingale (probability theory)Convex orderMathematics - ProbabilityGibbs sampling
researchProduct

Coupled conditional backward sampling particle filter

2020

The conditional particle filter (CPF) is a promising algorithm for general hidden Markov model smoothing. Empirical evidence suggests that the variant of CPF with backward sampling (CBPF) performs well even with long time series. Previous theoretical results have not been able to demonstrate the improvement brought by backward sampling, whereas we provide rates showing that CBPF can remain effective with a fixed number of particles independent of the time horizon. Our result is based on analysis of a new coupling of two CBPFs, the coupled conditional backward sampling particle filter (CCBPF). We show that CCBPF has good stability properties in the sense that with fixed number of particles, …

65C05FOS: Computer and information sciencesStatistics and ProbabilityunbiasedMarkovin ketjutTime horizonStatistics - Computation01 natural sciencesStability (probability)backward sampling65C05 (Primary) 60J05 65C35 65C40 (secondary)010104 statistics & probabilityconvergence rateFOS: MathematicsApplied mathematics0101 mathematicscouplingHidden Markov model65C35Computation (stat.CO)Mathematicsstokastiset prosessitBackward samplingSeries (mathematics)Probability (math.PR)Sampling (statistics)conditional particle filterMonte Carlo -menetelmätRate of convergence65C6065C40numeerinen analyysiStatistics Probability and UncertaintyParticle filterMathematics - ProbabilitySmoothing
researchProduct

Importance sampling correction versus standard averages of reversible MCMCs in terms of the asymptotic variance

2017

We establish an ordering criterion for the asymptotic variances of two consistent Markov chain Monte Carlo (MCMC) estimators: an importance sampling (IS) estimator, based on an approximate reversible chain and subsequent IS weighting, and a standard MCMC estimator, based on an exact reversible chain. Essentially, we relax the criterion of the Peskun type covariance ordering by considering two different invariant probabilities, and obtain, in place of a strict ordering of asymptotic variances, a bound of the asymptotic variance of IS by that of the direct MCMC. Simple examples show that IS can have arbitrarily better or worse asymptotic variance than Metropolis-Hastings and delayed-acceptanc…

Statistics and ProbabilityFOS: Computer and information sciencesdelayed-acceptanceMarkovin ketjut01 natural sciencesStatistics - Computationasymptotic variance010104 statistics & probabilitysymbols.namesake60J22 65C05unbiased estimatorFOS: MathematicsApplied mathematics0101 mathematicsComputation (stat.CO)stokastiset prosessitestimointiMathematicsnumeeriset menetelmätpseudo-marginal algorithmApplied Mathematics010102 general mathematicsProbability (math.PR)EstimatorMarkov chain Monte CarloCovarianceInfimum and supremumWeightingMarkov chain Monte CarloMonte Carlo -menetelmätDelta methodimportance samplingModeling and SimulationBounded functionsymbolsImportance samplingMathematics - Probability
researchProduct

Exact simulation of diffusion first exit times: algorithm acceleration

2020

In order to describe or estimate different quantities related to a specific random variable, it is of prime interest to numerically generate such a variate. In specific situations, the exact generation of random variables might be either momentarily unavailable or too expensive in terms of computation time. It therefore needs to be replaced by an approximation procedure. As was previously the case, the ambitious exact simulation of exit times for diffusion processes was unreachable though it concerns many applications in different fields like mathematical finance, neuroscience or reliability. The usual way to describe exit times was to use discretization schemes, that are of course approxim…

[MATH.MATH-PR] Mathematics [math]/Probability [math.PR]Probability (math.PR)primary 65C05 secondary:60G40 68W20 68T05 65C20 91A60 60J60diffusion processes[MATH] Mathematics [math]Exit timeExit time Brownian motion diffusion processes rejection sampling exact simulation multi-armed bandit randomized algorithm.randomized algorithm[MATH.MATH-PR]Mathematics [math]/Probability [math.PR]exact simulationFOS: MathematicsBrownian motionmulti-armed banditMathematics - ProbabilityRejection sampling
researchProduct

On the stability of some controlled Markov chains and its applications to stochastic approximation with Markovian dynamic

2015

We develop a practical approach to establish the stability, that is, the recurrence in a given set, of a large class of controlled Markov chains. These processes arise in various areas of applied science and encompass important numerical methods. We show in particular how individual Lyapunov functions and associated drift conditions for the parametrized family of Markov transition probabilities and the parameter update can be combined to form Lyapunov functions for the joint process, leading to the proof of the desired stability property. Of particular interest is the fact that the approach applies even in situations where the two components of the process present a time-scale separation, w…

65C05FOS: Computer and information sciencesStatistics and ProbabilityLyapunov functionStability (learning theory)Markov processContext (language use)Mathematics - Statistics Theorycontrolled Markov chainsStatistics Theory (math.ST)Stochastic approximation01 natural sciencesMethodology (stat.ME)010104 statistics & probabilitysymbols.namesake60J05stochastic approximationFOS: MathematicsComputational statisticsApplied mathematics60J220101 mathematicsStatistics - MethodologyMathematicsSequenceMarkov chain010102 general mathematicsStability Markov chainssymbolsStatistics Probability and Uncertaintyadaptive Markov chain Monte Carlo
researchProduct

Exact simulation of first exit times for one-dimensional diffusion processes

2019

International audience; The simulation of exit times for diffusion processes is a challenging task since it concerns many applications in different fields like mathematical finance, neuroscience, reliability horizontal ellipsis The usual procedure is to use discretization schemes which unfortunately introduce some error in the target distribution. Our aim is to present a new algorithm which simulates exactly the exit time for one-dimensional diffusions. This acceptance-rejection algorithm requires to simulate exactly the exit time of the Brownian motion on one side and the Brownian position at a given time, constrained not to have exit before, on the other side. Crucial tools in this study …

Girsanov theoremand phrases: Exit timeDiscretizationsecondary: 65N75Exit time Brownian motion diffusion processes Girsanov’s transformation rejection sampling exact simulation randomized algorithm conditioned Brownian motion.MSC 65C05 65N75 60G40Exit time01 natural sciencesGirsanov’s transformationrandomized algorithm010104 statistics & probabilityrejection samplingGirsanov's transformationexact simulationFOS: MathematicsApplied mathematicsMathematics - Numerical Analysis0101 mathematicsConvergent seriesBrownian motion60G40MathematicsNumerical AnalysisApplied MathematicsMathematical financeRejection samplingProbability (math.PR)diffusion processesNumerical Analysis (math.NA)conditioned Brownian motionRandomized algorithm010101 applied mathematics[MATH.MATH-PR]Mathematics [math]/Probability [math.PR]Computational MathematicsModeling and Simulationconditioned Brownian motion 2010 AMS subject classifications: primary 65C05Brownian motionRandom variableMathematics - ProbabilityAnalysis[MATH.MATH-NA]Mathematics [math]/Numerical Analysis [math.NA]
researchProduct