6533b823fe1ef96bd127eb1e
RESEARCH PRODUCT
On resampling schemes for particle filters with weakly informative observations
Nicolas ChopinSumeetpal S. SinghTomás SotoMatti Viholasubject
FOS: Computer and information sciencesHidden Markov modelparticle filterStatistics and ProbabilityProbability (math.PR)Markovin ketjutStatistics - ComputationMethodology (stat.ME)resamplingFOS: Mathematicsotantanumeerinen analyysiPrimary 65C35 secondary 65C05 65C60 60J25Statistics Probability and UncertaintyFeynman–Kac modeltilastolliset mallitComputation (stat.CO)path integralMathematics - ProbabilityStatistics - Methodologystokastiset prosessitdescription
We consider particle filters with weakly informative observations (or `potentials') relative to the latent state dynamics. The particular focus of this work is on particle filters to approximate time-discretisations of continuous-time Feynman--Kac path integral models -- a scenario that naturally arises when addressing filtering and smoothing problems in continuous time -- but our findings are indicative about weakly informative settings beyond this context too. We study the performance of different resampling schemes, such as systematic resampling, SSP (Srinivasan sampling process) and stratified resampling, as the time-discretisation becomes finer and also identify their continuous-time limit, which is expressed as a suitably defined `infinitesimal generator.' By contrasting these generators, we find that (certain modifications of) systematic and SSP resampling `dominate' stratified and independent `killing' resampling in terms of their limiting overall resampling rate. The reduced intensity of resampling manifests itself in lower variance in our numerical experiment. This efficiency result, through an ordering of the resampling rate, is new to the literature. The second major contribution of this work concerns the analysis of the limiting behaviour of the entire population of particles of the particle filter as the time discretisation becomes finer. We provide the first proof, under general conditions, that the particle approximation of the discretised continuous-time Feynman--Kac path integral models converges to a (uniformly weighted) continuous-time particle system.
year | journal | country | edition | language |
---|---|---|---|---|
2022-01-01 |