Search results for "65C05"

showing 10 items of 13 documents

On the stability of some controlled Markov chains and its applications to stochastic approximation with Markovian dynamic

2015

We develop a practical approach to establish the stability, that is, the recurrence in a given set, of a large class of controlled Markov chains. These processes arise in various areas of applied science and encompass important numerical methods. We show in particular how individual Lyapunov functions and associated drift conditions for the parametrized family of Markov transition probabilities and the parameter update can be combined to form Lyapunov functions for the joint process, leading to the proof of the desired stability property. Of particular interest is the fact that the approach applies even in situations where the two components of the process present a time-scale separation, w…

65C05FOS: Computer and information sciencesStatistics and ProbabilityLyapunov functionStability (learning theory)Markov processContext (language use)Mathematics - Statistics Theorycontrolled Markov chainsStatistics Theory (math.ST)Stochastic approximation01 natural sciencesMethodology (stat.ME)010104 statistics & probabilitysymbols.namesake60J05stochastic approximationFOS: MathematicsComputational statisticsApplied mathematics60J220101 mathematicsStatistics - MethodologyMathematicsSequenceMarkov chain010102 general mathematicsStability Markov chainssymbolsStatistics Probability and Uncertaintyadaptive Markov chain Monte Carlo
researchProduct

Coupled conditional backward sampling particle filter

2020

The conditional particle filter (CPF) is a promising algorithm for general hidden Markov model smoothing. Empirical evidence suggests that the variant of CPF with backward sampling (CBPF) performs well even with long time series. Previous theoretical results have not been able to demonstrate the improvement brought by backward sampling, whereas we provide rates showing that CBPF can remain effective with a fixed number of particles independent of the time horizon. Our result is based on analysis of a new coupling of two CBPFs, the coupled conditional backward sampling particle filter (CCBPF). We show that CCBPF has good stability properties in the sense that with fixed number of particles, …

65C05FOS: Computer and information sciencesStatistics and ProbabilityunbiasedMarkovin ketjutTime horizonStatistics - Computation01 natural sciencesStability (probability)backward sampling65C05 (Primary) 60J05 65C35 65C40 (secondary)010104 statistics & probabilityconvergence rateFOS: MathematicsApplied mathematics0101 mathematicscouplingHidden Markov model65C35Computation (stat.CO)Mathematicsstokastiset prosessitBackward samplingSeries (mathematics)Probability (math.PR)Sampling (statistics)conditional particle filterMonte Carlo -menetelmätRate of convergence65C6065C40numeerinen analyysiStatistics Probability and UncertaintyParticle filterMathematics - ProbabilitySmoothing
researchProduct

Uncertainty quantification on a spatial Markov-chain model for the progression of skin cancer

2019

AbstractA spatial Markov-chain model is formulated for the progression of skin cancer. The model is based on the division of the computational domain into nodal points, that can be in a binary state: either in ‘cancer state’ or in ‘non-cancer state’. The model assigns probabilities for the non-reversible transition from ‘non-cancer’ state to the ‘cancer state’ that depend on the states of the neighbouring nodes. The likelihood of transition further depends on the life burden intensity of the UV-rays that the skin is exposed to. The probabilistic nature of the process and the uncertainty in the input data is assessed by the use of Monte Carlo simulations. A good fit between experiments on mi…

65C05Skin NeoplasmsComputer scienceQuantitative Biology::Tissues and OrgansMarkovin ketjut0206 medical engineeringMonte Carlo methodPhysics::Medical PhysicsBinary number02 engineering and technologyArticleihosyöpä03 medical and health sciencesMicemedicineAnimalsHumansComputer SimulationStatistical physicsUncertainty quantification60J20stokastiset prosessit030304 developmental biologyProbability0303 health sciencesMarkov chainApplied MathematicsProbabilistic logicUncertaintyState (functional analysis)medicine.disease020601 biomedical engineeringAgricultural and Biological Sciences (miscellaneous)Markov ChainsCardinal pointModeling and Simulation65C40Disease Progressionmatemaattiset mallitSkin cancerMonte Carlo MethodJournal of Mathematical Biology
researchProduct

From Feynman–Kac formulae to numerical stochastic homogenization in electrical impedance tomography

2016

In this paper, we use the theory of symmetric Dirichlet forms to derive Feynman–Kac formulae for the forward problem of electrical impedance tomography with possibly anisotropic, merely measurable conductivities corresponding to different electrode models on bounded Lipschitz domains. Subsequently, we employ these Feynman–Kac formulae to rigorously justify stochastic homogenization in the case of a stochastic boundary value problem arising from an inverse anomaly detection problem. Motivated by this theoretical result, we prove an estimate for the speed of convergence of the projected mean-square displacement of the underlying process which may serve as the theoretical foundation for the de…

65C05Statistics and Probability65N21stochastic homogenizationquantitative convergence result01 natural sciencesHomogenization (chemistry)78M40general reflecting diffusion process010104 statistics & probabilitysymbols.namesakeFeynman–Kac formula60J4535Q60Applied mathematicsFeynman diagramBoundary value problemSkorohod decomposition0101 mathematicsElectrical impedance tomographyBrownian motionMathematicsrandom conductivity field65N75010102 general mathematicsFeynman–Kac formulaLipschitz continuityBounded functionstochastic forward problemsymbols60J55Statistics Probability and Uncertainty60H30electrical impedance tomographyThe Annals of Applied Probability
researchProduct

On resampling schemes for particle filters with weakly informative observations

2022

We consider particle filters with weakly informative observations (or `potentials') relative to the latent state dynamics. The particular focus of this work is on particle filters to approximate time-discretisations of continuous-time Feynman--Kac path integral models -- a scenario that naturally arises when addressing filtering and smoothing problems in continuous time -- but our findings are indicative about weakly informative settings beyond this context too. We study the performance of different resampling schemes, such as systematic resampling, SSP (Srinivasan sampling process) and stratified resampling, as the time-discretisation becomes finer and also identify their continuous-time l…

FOS: Computer and information sciencesHidden Markov modelparticle filterStatistics and ProbabilityProbability (math.PR)Markovin ketjutStatistics - ComputationMethodology (stat.ME)resamplingFOS: Mathematicsotantanumeerinen analyysiPrimary 65C35 secondary 65C05 65C60 60J25Statistics Probability and UncertaintyFeynman–Kac modeltilastolliset mallitComputation (stat.CO)path integralMathematics - ProbabilityStatistics - Methodologystokastiset prosessit
researchProduct

Unbiased Estimators and Multilevel Monte Carlo

2018

Multilevel Monte Carlo (MLMC) and unbiased estimators recently proposed by McLeish (Monte Carlo Methods Appl., 2011) and Rhee and Glynn (Oper. Res., 2015) are closely related. This connection is elaborated by presenting a new general class of unbiased estimators, which admits previous debiasing schemes as special cases. New lower variance estimators are proposed, which are stratified versions of earlier unbiased schemes. Under general conditions, essentially when MLMC admits the canonical square root Monte Carlo error rate, the proposed new schemes are shown to be asymptotically as efficient as MLMC, both in terms of variance and cost. The experiments demonstrate that the variance reduction…

FOS: Computer and information sciencesMonte Carlo methodWord error rate010103 numerical & computational mathematicsstochastic differential equationManagement Science and Operations ResearchStatistics - Computation01 natural sciences010104 statistics & probabilityStochastic differential equationstratificationSquare rootFOS: MathematicsApplied mathematics0101 mathematicsComputation (stat.CO)stokastiset prosessitMathematicsProbability (math.PR)ta111EstimatorVariance (accounting)unbiased estimatorsComputer Science ApplicationsMonte Carlo -menetelmät65C05 (Primary) 65C30 (Secondary)efficiencykerrostuneisuusVariance reductionunbiasemultilevel Monte CarlodifferentiaaliyhtälötMathematics - ProbabilityOperations Research
researchProduct

Unbiased Inference for Discretely Observed Hidden Markov Model Diffusions

2021

We develop a Bayesian inference method for diffusions observed discretely and with noise, which is free of discretisation bias. Unlike existing unbiased inference methods, our method does not rely on exact simulation techniques. Instead, our method uses standard time-discretised approximations of diffusions, such as the Euler--Maruyama scheme. Our approach is based on particle marginal Metropolis--Hastings, a particle filter, randomised multilevel Monte Carlo, and importance sampling type correction of approximate Markov chain Monte Carlo. The resulting estimator leads to inference without a bias from the time-discretisation as the number of Markov chain iterations increases. We give conver…

FOS: Computer and information sciencesStatistics and ProbabilityDiscretizationComputer scienceMarkovin ketjutInference010103 numerical & computational mathematicssequential Monte CarloBayesian inferenceStatistics - Computation01 natural sciencesMethodology (stat.ME)010104 statistics & probabilitysymbols.namesakediffuusio (fysikaaliset ilmiöt)FOS: MathematicsDiscrete Mathematics and Combinatorics0101 mathematicsHidden Markov modelComputation (stat.CO)Statistics - Methodologymatematiikkabayesilainen menetelmäApplied MathematicsProbability (math.PR)diffusionmatemaattiset menetelmätMarkov chain Monte CarloMarkov chain Monte CarloMonte Carlo -menetelmätNoiseimportance sampling65C05 (primary) 60H35 65C35 65C40 (secondary)Modeling and Simulationsymbolsmatemaattiset mallitStatistics Probability and Uncertaintymultilevel Monte CarloParticle filterAlgorithmMathematics - ProbabilityImportance samplingSIAM/ASA Journal on Uncertainty Quantification
researchProduct

Exact simulation of first exit times for one-dimensional diffusion processes

2019

International audience; The simulation of exit times for diffusion processes is a challenging task since it concerns many applications in different fields like mathematical finance, neuroscience, reliability horizontal ellipsis The usual procedure is to use discretization schemes which unfortunately introduce some error in the target distribution. Our aim is to present a new algorithm which simulates exactly the exit time for one-dimensional diffusions. This acceptance-rejection algorithm requires to simulate exactly the exit time of the Brownian motion on one side and the Brownian position at a given time, constrained not to have exit before, on the other side. Crucial tools in this study …

Girsanov theoremand phrases: Exit timeDiscretizationsecondary: 65N75Exit time Brownian motion diffusion processes Girsanov’s transformation rejection sampling exact simulation randomized algorithm conditioned Brownian motion.MSC 65C05 65N75 60G40Exit time01 natural sciencesGirsanov’s transformationrandomized algorithm010104 statistics & probabilityrejection samplingGirsanov's transformationexact simulationFOS: MathematicsApplied mathematicsMathematics - Numerical Analysis0101 mathematicsConvergent seriesBrownian motion60G40MathematicsNumerical AnalysisApplied MathematicsMathematical financeRejection samplingProbability (math.PR)diffusion processesNumerical Analysis (math.NA)conditioned Brownian motionRandomized algorithm010101 applied mathematics[MATH.MATH-PR]Mathematics [math]/Probability [math.PR]Computational MathematicsModeling and Simulationconditioned Brownian motion 2010 AMS subject classifications: primary 65C05Brownian motionRandom variableMathematics - ProbabilityAnalysis[MATH.MATH-NA]Mathematics [math]/Numerical Analysis [math.NA]
researchProduct

Establishing some order amongst exact approximations of MCMCs

2016

Exact approximations of Markov chain Monte Carlo (MCMC) algorithms are a general emerging class of sampling algorithms. One of the main ideas behind exact approximations consists of replacing intractable quantities required to run standard MCMC algorithms, such as the target probability density in a Metropolis-Hastings algorithm, with estimators. Perhaps surprisingly, such approximations lead to powerful algorithms which are exact in the sense that they are guaranteed to have correct limiting distributions. In this paper we discover a general framework which allows one to compare, or order, performance measures of two implementations of such algorithms. In particular, we establish an order …

Statistics and ProbabilityFOS: Computer and information sciences65C05Mathematical optimizationMonotonic function01 natural sciencesStatistics - ComputationPseudo-marginal algorithm010104 statistics & probabilitysymbols.namesake60J05martingale couplingalgoritmitFOS: MathematicsApplied mathematics60J220101 mathematicsComputation (stat.CO)Mathematics65C40 (Primary) 60J05 65C05 (Secondary)Martingale couplingMarkov chainmatematiikkapseudo-marginal algorithm010102 general mathematicsProbability (math.PR)EstimatorMarkov chain Monte Carloconvex orderDelta methodMarkov chain Monte CarloOrder conditionsymbolsStatistics Probability and UncertaintyAsymptotic variance60E15Martingale (probability theory)Convex orderMathematics - ProbabilityGibbs sampling
researchProduct

Importance sampling correction versus standard averages of reversible MCMCs in terms of the asymptotic variance

2017

We establish an ordering criterion for the asymptotic variances of two consistent Markov chain Monte Carlo (MCMC) estimators: an importance sampling (IS) estimator, based on an approximate reversible chain and subsequent IS weighting, and a standard MCMC estimator, based on an exact reversible chain. Essentially, we relax the criterion of the Peskun type covariance ordering by considering two different invariant probabilities, and obtain, in place of a strict ordering of asymptotic variances, a bound of the asymptotic variance of IS by that of the direct MCMC. Simple examples show that IS can have arbitrarily better or worse asymptotic variance than Metropolis-Hastings and delayed-acceptanc…

Statistics and ProbabilityFOS: Computer and information sciencesdelayed-acceptanceMarkovin ketjut01 natural sciencesStatistics - Computationasymptotic variance010104 statistics & probabilitysymbols.namesake60J22 65C05unbiased estimatorFOS: MathematicsApplied mathematics0101 mathematicsComputation (stat.CO)stokastiset prosessitestimointiMathematicsnumeeriset menetelmätpseudo-marginal algorithmApplied Mathematics010102 general mathematicsProbability (math.PR)EstimatorMarkov chain Monte CarloCovarianceInfimum and supremumWeightingMarkov chain Monte CarloMonte Carlo -menetelmätDelta methodimportance samplingModeling and SimulationBounded functionsymbolsImportance samplingMathematics - Probability
researchProduct