Search results for "70Q05"

showing 9 items of 9 documents

TIME-MINIMAL CONTROL OF DISSIPATIVE TWO-LEVEL QUANTUM SYSTEMS: THE INTEGRABLE CASE

2009

The objective of this article is to apply recent developments in geometric optimal control to analyze the time minimum control problem of dissipative two-level quantum systems whose dynamics is governed by the Lindblad equation. We focus our analysis on the case where the extremal Hamiltonian is integrable.

0209 industrial biotechnologyControl and OptimizationIntegrable systemQuantum dynamics[PHYS.MPHY]Physics [physics]/Mathematical Physics [math-ph]FOS: Physical sciences02 engineering and technology01 natural sciences020901 industrial engineering & automation[MATH.MATH-MP]Mathematics [math]/Mathematical Physics [math-ph]0103 physical sciencesQuantum operation[MATH.MATH-MP] Mathematics [math]/Mathematical Physics [math-ph]010306 general physicsMathematical PhysicsMathematicsMathematical physicsLindblad equationApplied MathematicsMathematical analysis[ MATH.MATH-MP ] Mathematics [math]/Mathematical Physics [math-ph]Mathematical Physics (math-ph)[PHYS.MPHY] Physics [physics]/Mathematical Physics [math-ph]16. Peace & justice49K15 70Q05Quantum processDissipative systemQuantum algorithm[ PHYS.MPHY ] Physics [physics]/Mathematical Physics [math-ph]Hamiltonian (control theory)
researchProduct

Une approche géométrique du contrôle optimal de l'arc atmosphérique de la navette spatiale

2002

L'objectif de ce travail est de faire quelques remarques géométriques et des calculs préliminaires pour construire l'arc atmosphérique optimal d'une navette spatiale (problème de rentrée sur Terre ou programme d'exploration de Mars). Le système décrivant les trajectoires est de dimension 6, le contrôle est l'angle de gîte cinématique et le coût est l'intégrale du flux thermique. Par ailleurs il y a des contraintes sur l'état (flux thermique, accélération normale et pression dynamique). Notre étude est essentiellement géométrique et fondée sur une évaluation de l'ensemble des états accessibles en tenant compte des contraintes sur l'état. On esquisse une analyse des extrémales du Principe du …

[ MATH.MATH-OC ] Mathematics [math]/Optimization and Control [math.OC]0209 industrial biotechnologyControl and OptimizationAcceleration (differential geometry)02 engineering and technology01 natural sciences020901 industrial engineering & automationDimension (vector space)Applied mathematics49K1570Q050101 mathematicscontrôle optimal avec contraintes sur l'étatMathematicsMars sample return010102 general mathematicsprincipes du minimum[MATH.MATH-OC] Mathematics [math]/Optimization and Control [math.OC]State (functional analysis)arc atmosphériqueMinimum principleComputational MathematicsHeat fluxControl and Systems Engineeringmécanique célesteDynamic pressure[MATH.MATH-OC]Mathematics [math]/Optimization and Control [math.OC]
researchProduct

Geodesic flow of the averaged controlled Kepler equation

2008

A normal form of the Riemannian metric arising when averaging the coplanar controlled Kepler equation is given. This metric is parameterized by two scalar invariants which encode its main properties. The restriction of the metric to $\SS^2$ is shown to be conformal to the flat metric on an oblate ellipsoid of revolution, and the associated conjugate locus is observed to be a deformation of the standard astroid. Though not complete because of a singularity in the space of ellipses, the metric has convexity properties that are expressed in terms of the aforementioned invariants, and related to surjectivity of the exponential mapping. Optimality properties of geodesics of the averaged controll…

[ MATH.MATH-OC ] Mathematics [math]/Optimization and Control [math.OC]0209 industrial biotechnologyGeodesicGeneral MathematicsCut locusConformal map02 engineering and technologyKepler's equationFundamental theorem of Riemannian geometry01 natural sciencesConvexityIntrinsic metricsymbols.namesake020901 industrial engineering & automationSingularity0101 mathematicsorbit transferMathematicsApplied Mathematics010102 general mathematicsMathematical analysis[MATH.MATH-OC] Mathematics [math]/Optimization and Control [math.OC]cut and conjugate lociRiemannian metrics49K15 70Q05symbols[MATH.MATH-OC]Mathematics [math]/Optimization and Control [math.OC]
researchProduct

Second order optimality conditions in the smooth case and applications in optimal control

2007

International audience; The aim of this article is to present algorithms to compute the first conjugate time along a smooth extremal curve, where the trajectory ceases to be optimal. It is based on recent theoretical developments of geometric optimal control, and the article contains a review of second order optimality conditions. The computations are related to a test of positivity of the intrinsic second order derivative or a test of singularity of the extremal flow. We derive an algorithm called COTCOT (Conditions of Order Two and COnjugate times), available on the web, and apply it to the minimal time problem of orbit transfer, and to the attitude control problem of a rigid spacecraft. …

[ MATH.MATH-OC ] Mathematics [math]/Optimization and Control [math.OC]0209 industrial biotechnologyMathematical optimizationControl and Optimization02 engineering and technology01 natural sciences020901 industrial engineering & automationJacobi fieldSingularity0101 mathematicsorbit transferMathematicsSecond derivativeJacobi fieldsecond-order intrinsic derivative010102 general mathematicsConjugate pointsattitude control49K15 49-04 70Q05[MATH.MATH-OC] Mathematics [math]/Optimization and Control [math.OC]Optimal controlComputational MathematicsFlow (mathematics)Control and Systems EngineeringTrajectoryconjugate pointLagrangian singularity[MATH.MATH-OC]Mathematics [math]/Optimization and Control [math.OC]Orbit (control theory)
researchProduct

Conjugate and cut loci of a two-sphere of revolution with application to optimal control

2008

Abstract The objective of this article is to present a sharp result to determine when the cut locus for a class of metrics on a two-sphere of revolution is reduced to a single branch. This work is motivated by optimal control problems in space and quantum dynamics and gives global optimal results in orbital transfer and for Lindblad equations in quantum control.

[ MATH.MATH-OC ] Mathematics [math]/Optimization and Control [math.OC]0209 industrial biotechnologyWork (thermodynamics)Class (set theory)Quantum dynamicsCut locus02 engineering and technologySpace (mathematics)01 natural sciencesspace and quantum mechanicsoptimal control020901 industrial engineering & automationconjugate and cut loci0101 mathematics2-spheres of revolutionMathematical PhysicsMathematicsApplied Mathematics010102 general mathematicsMathematical analysis[MATH.MATH-OC] Mathematics [math]/Optimization and Control [math.OC]53C20; 53C21; 49K15; 70Q05Optimal controlMetric (mathematics)[MATH.MATH-OC]Mathematics [math]/Optimization and Control [math.OC]Orbital maneuverAnalysis
researchProduct

On some Riemannian aspects of two and three-body controlled problems

2009

The flow of the Kepler problem (motion of two mutually attracting bodies) is known to be geodesic after the work of Moser [20], extended by Belbruno and Osipov [2, 21]: Trajectories are reparameterizations of minimum length curves for some Riemannian metric. This is not true anymore in the case of the three-body problem, and there are topological obstructions as observed by McCord et al. [19]. The controlled formulations of these two problems are considered so as to model the motion of a spacecraft within the influence of one or two planets. The averaged flow of the (energy minimum) controlled Kepler problem with two controls is shown to remain geodesic. The same holds true in the case of o…

[ MATH.MATH-OC ] Mathematics [math]/Optimization and Control [math.OC]Work (thermodynamics)Geodesic010102 general mathematicsMathematical analysisMotion (geometry)[MATH.MATH-OC] Mathematics [math]/Optimization and Control [math.OC]Optimal control01 natural sciencesOptimal controlsymbols.namesakeFlow (mathematics)Kepler problemCut and conjugate loci0103 physical sciencesMetric (mathematics)symbolsGeodesic flowTwo and three-body problems49K15 53C20 70Q05Gravitational singularity[MATH.MATH-OC]Mathematics [math]/Optimization and Control [math.OC]0101 mathematics010303 astronomy & astrophysicsMathematics
researchProduct

One-parameter family of Clairaut-Liouville metrics

2007

Riemannian metrics with singularities are considered on the $2$-sphere of revolution. The analysis of such singularities is motivated by examples stemming from mechanics and related to projections of higher dimensional (regular) sub-Riemannian distributions. An unfolding of the metrics in the form of an homotopy from the canonical metric on $\SS^2$ is defined which allows to analyze the singular case as a limit of standard Riemannian ones. A bifurcation of the conjugate locus for points on the singularity is finally exhibited.

[ MATH.MATH-OC ] Mathematics [math]/Optimization and Control [math.OC]space mechanics49K15 53C20 70Q05$2$-sphere of revolution[MATH.MATH-OC] Mathematics [math]/Optimization and Control [math.OC][MATH.MATH-OC]Mathematics [math]/Optimization and Control [math.OC]Mathematics::Differential Geometryunfolding
researchProduct

Second order optimality conditions with applications

2007

International audience; The aim of this article is to present the algorithm to compute the first conjugate point along a smooth extremal curve. Under generic assump- tions, the tra jectory ceases to be optimal at such a point. An implementation of this algorithm, called cotcot, is available online and based on recent devel- opments in geometric optimal control. It is applied to analyze the averaged optimal transfer of a satellite between elliptic orbits.

conjugate points[ MATH.MATH-OC ] Mathematics [math]/Optimization and Control [math.OC]time optimal control49K15 70Q05Orbital transfer[MATH.MATH-OC] Mathematics [math]/Optimization and Control [math.OC][MATH.MATH-OC]Mathematics [math]/Optimization and Control [math.OC]Riemannian systems with drift
researchProduct

Second order optimality conditions in optimal control with applications

2006

The aim of this article is to present the algorithm to compute the first conjugate point along a smooth extremal curve. Under generic assumptions, the trajectory ceases to be optimal at such a point. An implementation of this algorithm, called \texttt{cotcot}, is available online and based on recent developments in geometric optimal control. It is applied to analyze the averaged optimal transfer of a satellite between elliptic orbits.

conjugate points[ MATH.MATH-OC ] Mathematics [math]/Optimization and Control [math.OC]time optimal control49K15 70Q05orbital transfer[MATH.MATH-OC] Mathematics [math]/Optimization and Control [math.OC][MATH.MATH-OC]Mathematics [math]/Optimization and Control [math.OC]Riemannian systems with drift
researchProduct