Search results for "73.40.Sx"

showing 2 items of 2 documents

Fabrication of carbon nanotube-based field-effect transistors for studies of their memory effects

2007

Carbon nanotube‐based field‐effect transistors (CNTFETs) have been fabricated using nanometer thin dielectric material as the gate insulator film. The demonstrated fabrication technique is highly suitable for preparing devices with low contact resistances between the electrodes and the carbon nanotube, down to 14 kΩ. Electronic transport measurements of the fabricated devices have been conducted on more than 70 FETs. Hysteretic behavior in the transfer characteristics of some CNTFETs was observed.

Materials scienceFabricationTransistorContact resistanceNanotechnology85.30.TvDielectricCarbon nanotubeCondensed Matter Physics85.35.Kt73.40.SxElectronic Optical and Magnetic Materialslaw.inventionCarbon nanotube field-effect transistorlaw73.63.FgElectrodeField-effect transistor73.23.-bphysica status solidi (b)
researchProduct

Electron-phonon heat transport in degenerate Si at low temperatures

2004

The thermal conductance between electrons and phonons in a solid state system becomes comparatively weak at sub‐Kelvin temperatures. In this work five batches of thin heavily doped silicon‐on‐insulator samples with the electron concentration in the range of 2.0–16 × 1019 cm–3 were studied. Below 1 K all the samples were in the dirty limit of the thermal electron‐phonon coupling, where the thermal phonon wavelength exceeds the electron mean free path. The heat flow between electrons and phonons is proportional to (T6e–T6ph), where Te (Tph) is the electron (phonon) temperature. The constant of proportionality of the heat flow strongly depends on the electron concentration and its magnitude is…

Range (particle radiation)Heat currentCondensed matter physicsChemistryPhononDopingphononselectron phonon couplingElectron63.20.Kr73.40.SxWavelengthThermal conductivity66.70.+fCondensed Matter::Strongly Correlated ElectronsOrder of magnitude
researchProduct