Search results for "82C21"

showing 2 items of 2 documents

A SIMPLE PARTICLE MODEL FOR A SYSTEM OF COUPLED EQUATIONS WITH ABSORBING COLLISION TERM

2011

We study a particle model for a simple system of partial differential equations describing, in dimension $d\geq 2$, a two component mixture where light particles move in a medium of absorbing, fixed obstacles; the system consists in a transport and a reaction equation coupled through pure absorption collision terms. We consider a particle system where the obstacles, of radius $\var$, become inactive at a rate related to the number of light particles travelling in their range of influence at a given time and the light particles are instantaneously absorbed at the first time they meet the physical boundary of an obstacle; elements belonging to the same species do not interact among themselves…

Interacting particle systemsPhotonlarge numbers limitDimension (graph theory)FOS: Physical sciencesBoundary (topology)01 natural sciences010104 statistics & probabilityInteracting particle systems large numbers limit absorptionFOS: Mathematics[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP]Absorption (logic)0101 mathematics[PHYS.COND.CM-SM]Physics [physics]/Condensed Matter [cond-mat]/Statistical Mechanics [cond-mat.stat-mech]Condensed Matter - Statistical MechanicsPhysicsParticle systemNumerical AnalysisRange (particle radiation)Partial differential equationStatistical Mechanics (cond-mat.stat-mech)Probability (math.PR)010102 general mathematicsMathematical analysis[MATH.MATH-PR]Mathematics [math]/Probability [math.PR]Modeling and SimulationProduct measure82C22 82C21 60F05 60K35absorptionMathematics - Probability
researchProduct

Non Markovian Behavior of the Boltzmann-Grad Limit of Linear Stochastic Particle Systems

2007

We will review some results which illustrate how the distribution of obstacles and the shape of the characteristic curves influence the convergence of the probability density of linear stochastic particle systems to the one particle probability density associated with a Markovian process in the Boltzmann-Grad asymptotics.

Particle systemPhysicsLorentz gas82C21Applied MathematicsGeneral Mathematicsforce field82C40Markov processlattice gasForce field (chemistry)symbols.namesake60K35Boltzmann constantLinear Boltzmann equationsymbolsStatistical physicsnon MarkovianLinear boltzmann equation
researchProduct