Search results for "82C21"
showing 2 items of 2 documents
A SIMPLE PARTICLE MODEL FOR A SYSTEM OF COUPLED EQUATIONS WITH ABSORBING COLLISION TERM
2011
We study a particle model for a simple system of partial differential equations describing, in dimension $d\geq 2$, a two component mixture where light particles move in a medium of absorbing, fixed obstacles; the system consists in a transport and a reaction equation coupled through pure absorption collision terms. We consider a particle system where the obstacles, of radius $\var$, become inactive at a rate related to the number of light particles travelling in their range of influence at a given time and the light particles are instantaneously absorbed at the first time they meet the physical boundary of an obstacle; elements belonging to the same species do not interact among themselves…
Non Markovian Behavior of the Boltzmann-Grad Limit of Linear Stochastic Particle Systems
2007
We will review some results which illustrate how the distribution of obstacles and the shape of the characteristic curves influence the convergence of the probability density of linear stochastic particle systems to the one particle probability density associated with a Markovian process in the Boltzmann-Grad asymptotics.